
Marine Studies of San Ped.

Edited by Dorothy F. Soule and Mikihiko Oguri CIRCULATING COPY Sea Grant Depository

c. 3

Published by The Allan Hancock Foundation and The Office of Sea Grant Programs University of Southern California Los Angeles, California 90007 August 1974 USC-SG-8-74 Marine studies of San Pedro Bay, California

PART VII

SEDIMENT INVESTIGATIONS

CIRCULATING COPY Sea Grant Depository

Edited by

Dorothy F. Soule and Mikihiko Oguri

Published by

The Allan Hancock Foundation and The Office of Sea Grant Programs University of Southern California Los Angeles, California 90007

August 1974

USC-SG-8-74

Marine Studies of San Pedro Bay, California PART VII SEDIMENT INVESTIGATIONS

.

August 1974

SEDIMENT COMPOSITIONS IN LOS ANGELES-LONG BEACH HARBORS AND SAN PEDRO BASIN

by

Kenneth Y. Chen and James C.S. Lu

Environmental Engineering Programs University of Southern California Los Angeles, California 90007 This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce, under Grant #04-3-158-145, to the University of Southern California. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon.

USC-SG-8-74

PART VII

-

TABLE OF CONTENTS

LIST O	F FIGURES	νi
LIST O	F TABLES	xiii
ABSTRA	CT AND ACKNOWLEDGEMENTS	1
Ι.	INTRODUCTION	2
II.	SEDIMENT ANALYSIS VS. DREDGING CRITERIA	3
III.	SEDIMENT COMPOSITIONS AND THEIR RELATION TO THE POTENTIAL EFFECTS OF DREDGING ACTIVITIES	5
	Trace Metals in Sediments	6
	Pesticides in Sediments	6
	PCB's in Sediments	7
	Organic Materials in Sediments	7
	Association of Fine Particulates and Trace Pollutants	8
	Interactions of Chemical Constituents in Sediment	9
IV.	METHODOLOGY FOR SEDIMENT ANALYSIS	12
۷.	SEDIMENT DISTRIBUTION OF POLLUTIONAL PARAMETERS IN SAN PEDRO BASIN AND LOS ANGELES-LONG BEACH HARBORS	18
	San Pedro Basin	19
	Los Angeles-Long Beach Harbors	21
	Proposed Route for the Transport of Liquefied Natural Gas in Los Angeles Harbor	2 1
	Sediment Characteristics	22
VI.	SUMMARY AND CONCLUSIONS	23
VII.	LITERATURE CITED	25

LIST OF FIGURES

Fig. No.

1.	Distribution of As in the Sediments of San Pedro Channel33
2.	Distribution of Cd in the Sediments of San Pedro Channel \dots 34
3.	Distribution of Cr in the Sediments of San Pedro Channel35
4.	Distribution of Cu in the Sediments of San Pedro Channel36
5.	Distribution of Fe in the Sediments of San Pedro Channel37
6.	Distribution of Pb in the Sediments of San Pedro Channel 38
7.	Distribution of Hg in the Sediments of San Pedro Channel 39
8.	Distribution of Ni in the Sediments of San Pedro Channel40
9.	Distribution of Zn in the Sediments of San Pedro Channel 41
10.	Cd (ppm) Isoconcentration Lines
11.	Cr (ppm) Isoconcentration Lines43
12.	Cu (ppm) Isoconcentration Lines
13.	Fe (ppm) Isoconcentration Lines45
14.	Pb (ppm) Isoconcentration Lines
15.	Hg (ppm) Isoconcentration Lines
16.	Ni (ppm) Isoconcentration Lines
17.	Zn (ppm) Isoconcentration Lines
18.	COD in the Sediment of San Pedro Channel
19.	IOD in the Sediment of San Pedro Channel
20.	Kjeldahl Nitrogen in the Sediment of San Pedro Channel 52
21.	Organic Nitrogen in the Sediment of San Pedro Channel 53
22.	Oil and Grease in the Sediment of San Pedro Channel 54
23.	Total Phosphorus in the Sediment of San Pedro Channel 55 vi

F	i	g	•	No.

-

24.	TOC in the Sediment of San Pedro Channel
25.	TVS in the Sediment of San Pedro Channel
26.	DDD (ppm) in the Sediment of San Pedro Channel 58
27.	o,p'DDT (ppm) in the Sediment of San Pedro Channel 59
28.	p,p'DDT (ppm) in the Sediment of San Pedro Channel 60
29.	o,p'DDE (ppm) in the Sediment of San Pedro Channel 61
30.	p,p'DDE (ppm) in the Sediment of San Pedro Channel 62
31.	Total DDT (ppm) in the Sediment of San Pedro Channel 63
32.	PCB 1254 (ppm) in the Sediment of San Pedro Channel 64
33.	PCB 1260 (ppm) in the Sediment of San Pedro Channel 65
34.	Dieldrin (ppm) in the Sediment of San Pedro Channel 66
35.	Profiles of Contaminants in San Pedro Basin 67 (Section A-A of Figure 1)
36.	Profiles of Contaminants in San Pedro Basin (Section A-A of Figure 1)
37.	Stations for Surface Samples in Los Angeles-Long Beach Harbors
38.	Sampling Stations for the Proposed LNG Route
39.	Relative Intensity of Contamination in the Surface Sediments of L.AL.B. Harbors
40.	Profiles of Pollutants in the Surface Sediments of the Proposed LNG Route
41.	Profiles of Pollutants in the Surface Sediments of the Proposed LNG Route
42.	Profiles of Pollutants in the Surface Sediments of the Proposed LNG Route
	vii

<u>Fig</u>	<u>. No</u> .
43.	Cd Concentration vs. Water Depth in San Pedro Basin 75
44.	Cr Concentration vs. Water Depth in San Pedro Basin 76
4 5.	Cu Concentration vs. Water Depth in San Pedro Basin 77
46.	Fe Concentration vs. Water Depth in San Pedro Basin 78
47.	Hg Concentration vs. Water Depth in San Pedro Basin 79
48.	Pb Concentration vs. Water Depth in San Pedro Basin 80
49.	Ni Concentration vs. Water Depth in San Pedro Basin 81
50.	Zn Concentration vs. Water Depth in San Pedro Basin 82
51.	Cd Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
52.	Cr Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
53.	Cu Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
54.	Fe Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
55.	Pb Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
56.	Hg Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
57.	Ni Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
58.	Zn Concentration vs. % of Surface Sediments Passing Sieve #200 in L.A. Harbor
59.	Concentration of As vs. TOC in the Surface Sediments of San Pedro Basin
60.	Concentration of As vs. TOC in the Surface Sediments of L.AL.B. Harbors

-

-

<u>Fig.</u>	No.			
61.			the Sediments	93
62.	Concentration of Cd vs. TOC of San Pedro Basin	in	the Surface Sediments	94
63.	Concentration of Cd vs. TOC of L.AL.B. Harbors	in	the Surface Sediments	95
64.	Concentration of Cd vs. TOC of the Proposed LNG Route		the Sediments	96
65.	Concentration of Cr vs. TOC of San Pedro Basin	in	the Surface Sediments	97
66.	Concentration of Cr vs. TOC of L.AL.B. Harbors	in	the Surface Sediments	98
67.	Concentration of Cr vs. TOC of the Proposed LNG Route	in	the Sediments	9 9
6 8.	Concentration of Cu vs. TOC of San Pedro Basin	in	the Surface Sediments	100
69.	Concentration of Cu vs. TOC of L.AL.B. Harbors	in	the Surface Sediments	10 1
70.	Concentration of Cu vs. TOC of the Proposed LNG Route	in	the Sediments	102
71.	Concentration of Fe vs. TOC of San Pedro Basin	in	the Surface Sediments	103
	Concentration of Fe vs. TOC of L.AL.B. Harbors	in	the Surface Sediments	104
73.	Concentration of Fe vs. TOC of the Proposed LNG Route	in	the Sediments	1 05
74.	Concentration of Pb vs. TOC of San Pedro Basin	in	the Surface Sediments	106
75.	Concentration of Pb vs. TOC of L.AL.B. Harbors	in	the Surface Sediments	107

•

<u>Fig.</u>	No.
76.	Concentration of Pb vs. TOC in the Sediments of the Proposed LNG Route
77.	Concentration of Hg vs. TOC in the Surface Sediments of San Pedro Basin
78.	Concentration of Hg vs. TOC in the Surface Sediments of L.AL.B. Harbors
79.	Concentration of Hg vs. TOC in the Sediments of the Proposed LNG Route
80.	Concentration of Ni vs. TOC in the Surface Sediments of San Pedro Basin
81.	Concentration of Ni vs. TOC in the Surface Sediments of L.AL.B. Harbors
82.	Concentration of Ni vs. TOC in the Sediments of the Proposed LNG Route
83.	Concentration of Zn vs. TOC in the Surface Sediments of San Pedro Basin
84.	Concentration of Zn vs. TOC in the Surface Sediments of L.AL.B. Harbors
85.	Concentration of Zn vs. TOC in the Sediments of the Proposed LNG Route
86.	Concentration of As vs. TVS in the Surface Sediments of San Pedro Basin
87.	Concentration of As vs. TVS in the Sediments of the Proposed LNG Route
88.	Concentration of Cu vs. TVS in the Surface Sediments of San Pedro Basin
89.	Concentration of Fe vs. TVS in the Surface Sediments of San Pedro Basin
90.	Concentration of Pb vs. TVS in the Surface Sediments of San Pedro Basin

<u>Fig.</u>	<u>No</u> .
91.	Concentration of Hg vs. TVS in the Surface Sediments of San Pedro Basin123
92.	Concentration of Ni vs. TVS in the Surface Sediments of San Pedro Basin124
93.	Concentration of Zn vs. TVS in the Surface Sediments of San Pedro Basin125
94.	Concentration of Cd vs. Total Sulfides in the Surface Sediments of L.AL.B. Harbors
95.	Concentration of Cr vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
96.	Concentration of Cu vs. Total Sulfide in the Surface Sediments of San Pedro Basin
97.	Concentration of Cu vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
98.	Concentration of Fe vs. Total Sulfides in the Surface Sediments of San Pedro Basin130
99.	Concentration of Pb vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
100.	Concentration of Fe vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
101.	Concentration of Hg vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
102.	Concentration of Ni vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
103.	Concentration of Zn vs. Total Sulfide in the Surface Sediments of San Pedro Basin
104.	Concentration of Zn vs. Total Sulfide in the Surface Sediments of L.AL.B. Harbors
105.	TOC vs. COD in the Surface Sediments of San Pedro Basin \dots 137
106.	TOC vs. COD in the Surface Sediments of L.AL.B. Harbor 138

. 1

<u>Fig. No</u> .
107. TOC vs. COD in the Sediments of the Proposed LNG Route 139
108. TOC vs. COD in the Surface Sediments of San Pedro Basin140
109. TOC vs. IOD in the Surface Sediments of L.AL.B. Harbor. 141
110. TOC vs. IOD in the Sediments of the Proposed LNG Route 142
111. TOC vs. Oil and Grease in the Surface Sediments of San Pedro Basin
112. TOC vs. Oil and Grease in the Surface Sediments of L.AL.B. Harbors
113. TOC vs. Org. N or Kjeldahl N in the Surface Sediments of San Pedro Basin
114. TOC vs. Sulfide in the Surface Sediments of San Pedro Basin
115. TOC vs. Sulfide in the Surface Sediments of L.AL.B. Harbors147
116. TOC vs. TVS in the Surface Sediments of San Pedro Basin 148
117. TOC vs. TVS in the Surface Sediments of L.AL.B. Harbors., 149
118. TVS vs. COD in the Surface Sediments of San Pedro Basin 150
119. TVS vs. IOD in the Surface Sediments of San Pedro Basin 151
120. TVS vs. TOC in the Surface Sediments of San Pedro Basin 152

LIST OF TABLES

Table No.

-

1.	Natural Background Levels of Trace Metals in San Pedro Channel	20
2.	General Characteristics of Sediments in the Los Angeles Harbor	153
3.	Trace Metals in the Sediments of Los Angeles Harbor	158
4.	Chlorinated Hydrocarbons in the Sediments of Los Angeles Harbor	1 63
5.	Grouping of Surface Sediments by Relative Intensity of Contamination of L.A L.B. Harbors	1 6 8
6.	Grain Size Distribution Analyses of Sediment Samples from the Proposed LNG Route	169
7.	General Characteristics of Surface Sediments (0-3') from the Proposed LNG Route	175
8.	Metal Contents of Surface Sediments (0-3') from the Proposed LNG Route	176
9.	Chlorinated Hydrocarbons in Surface Sediments (0-3') from the Proposed LNG Route	177

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART VII

SEDIMENT COMPOSITIONS IN LOS ANGELES-LONG BEACH HARBORS AND SAN PEDRO BASIN

by

Kenneth Y. Chen and James C.S. Lu

Environmental Engineering Programs University of Southern California Los Angeles, CA 90007

<u>ABSTRACT</u>. Most surface sediments in the Los Angeles-Long Beach Harbors and nearby San Pedro Basin are grossly contaminated, with the exception of a few localities. Restricted dredging of polluted sediments from fractional areas of the harbor complex is probably beneficial to the ecosystem if the polluting substances can be properly disposed of. The Los Angeles County Sanitation District sewer outfall at White's Point is found to contribute substantial amounts of trace metals and chlorinated pesticides to the San Pedro Basin, while the harbor complex is found to be an important source of polychlorinated biphenyls into the San Pedro Basin. Interrelationships of pollution parameters are presented.

ACKNOWLEDGEMENTS. Field and laboratory investigations were funded primarily by the Los Angeles Harbor Department supplemented by the U.S. Army Corps of Engineers, the Harbor Environmental Projects of the Allan Hancock Foundation, and the U.S.C. Sea Grant Program. Field time on the R.V. Velero IV was supported by the National Science Foundation. We wish to acknowledge the assistance of M. Oguri and Harbor Environmental Projects personnel in carrying out the field sampling, of T.P. Pan in organizing the laboratory analysis, S.K. Gupta for data on chlorinated hydrocarbons, K.P. Ma for drawing, and Ms. L. Koss for final typing.

> Cover photograph by John Soule Box corer operated from R/V Velero IV

I. INTRODUCTION

Compositions of the newly deposited fine-grained sediments in an aquatic system document the influence of man's activity in the recent past. The Los Angeles metropolitan area is among the most populous areas in the world; the influx of wastewater, industrial waste, surface runoff, aerial fallout, and many other minor sources continuously add to the chemical composition of nearshore sediments. In order to differentiate the natural background of these sediments from those of man-made pollution, a comprehensive baseline study is needed.

Sediments are known to contain the major fractions of contaminants and nutrients of aquatic environments. In general, sediments are regarded as the permanent sinks of pollutants and nutrients from the overlying waters; however, dynamic exchanges between sediment-water interfaces are known to occur constantly, especially when redox conditions are changed. In recent years, genuine concerns have arisen over the deposition of sediments in open water on a large scale due to the need for the maintenance and creation of navigable waterways. The uncertainty of the course of migration of chemical constituents between solid and solution phases, and the possible effects of the resedimentation of polluted sediment on the exposure level to benthic organisms at disposal sites have led to the postponement of many marine construction and dredging activities.

Since sediments may contain relatively high concentrations of biological toxicants or stimulants, the excavation and redeposition of large quantities of these substances might cause substantial changes to the biological communities--which can be harmful or beneficial. The removal of grossly contaminated organic-rich, sulfide-rich sediments can be beneficial to the organisms on one hand; however, unless such sediments are properly handled or treated, damage to the biological communities can result from: the depletion of oxygen which is generally associated with pulses of high oxygen demand; release of trace contaminants; and production of suspended fine sediment in the water column.

Concentrations of trace contaminants in seawater are normally very low (SCCWRP, 1973). This is because of the adsorption of trace metals on particulate matter and low solubility of trace organics such as chlorinated hydrocarbons in water phases as well as their strong propensity for attaching to the solid phase. Therefore, the history of water pollution can generally be found in the study of sediment concentrations --even though such analyses do not generally yield the potential of a sediment for pollution.

Due to the lack of information on the natural background levels of trace substances and the uncertainty on the pollutional status of dredged materials and their possible effects on water quality, many of the agencies regulating dredged material disposal have tended to take a very cautious approach in passing judgement on the impact of dredging activities and proposing mitigating procedures, with consequent confusion, delays, and seemingly unending appeal procedures.

This report deals with the distribution of contaminants and nutrients in sediments of the Los Angeles-Long Beach Harbors and the adjacent San Pedro Channel. Such a study is necessary to elucidate the history of different pollution parameters. This information is needed to assess the potential effect of the large scale deposition of sediment from the harbor area into adjacent open waters as a result of dredging operations. In addition, the importance of the harbor as well as the nearshore coastal water as the nursery for marine organisms emphasises the need for comprehensive baseline data from which to observe the changes as well as to predict the significance of future activities on the system.

II. SEDIMENT ANALYSIS VS. DREDGING CRITERIA

At present, much research is being conducted to study the effect of the disposal of dredged materials known to contain various levels of pollutants in sediment. However, up to the present, there is very little definitive information on the relationships of various types of sediments and their bioavailability upon disposal. In examining data on gross sediment concentrations, it should be fully recognized that such parameters may not bear direct or linear relation to biological potentials. Nevertheless, it can be said, in broad terms, that polluted sediments generally release higher concentrations of trace contaminants and nutrients than the natural sediment. The most significant ecological implication of the chemical compositions of sediments is probably reflected in the exposure level of benthic organisms after sediments are resettled.

For this reason, the early Environmental Protection Agency Criteria for Determining Acceptability of Dredged Spoil Disposal to the Nation's Waters (both fresh and marine) were entirely based on gross concentrations with the following numerical limitations:

Chemical Constituents	Conc. % <u>(Dry wt. basis)</u>
Volatile solids	6.0
Chemical oxygen demand	5.0
Total Kjeldahl nitrogen	0.1
0il and grease	0.15
Mercury	0.0001
Lead	0.005
Zinc	0.005

TVS (%) dry = 1.32 + 0.98 (COD %)

Recent Federal regulations called for the establishment of a "Standard Elutriate Test," which would enable the differentiation of the fraction of a sediment without potential effect from the other fractions which may have potential effects (EPA, 1973). The requirements are as follows:

Dredged material will be considered unpolluted if it produces a standard elutriate in which the concentration of no major constituent is more than 1.5 times the concentration of the same constituent in the water from the proposed disposal site used for the testing. The "standard elutriate" is the supernatant resulting from the vigorous 30-minute shaking of 1 part bottom sediment with 4 parts water from the proposed disposal site followed by 1 hour of letting the mixture settle and appropriate filtration or centrifugation.

Such a procedure in principle does indeed represent a significant improvement over the analysis of gross concentrations in sediments, because the elutriate analysis at least points to a short term water quality effect. However, such a procedure presents tremendous difficulties in practice. At present, the most serious problem in establishing such criteria is the extreme difficulty in evaluating the validity of data from seawater studies. The analysis of trace metals in seawater generally requires a highly sophisticated and elaborate laboratory setup with meticulous cleaning procedures. Even so, the variation of data from one laboratory to another is enormous (Patterson, 1974). То create a new test such as the "Standard Elutriate Test" without thoroughly testing it prior to adoption would certainly create serious problems for the enforcement of regulations. The cost of setting up equipment to perform a meaningful study is generally beyond the reach of most laboratories.

In addition, the Standard Elutriate Test as outlined in the EPA guidelines does not take into consideration the possible changes of environmental variables which may alter the availability of toxicants and nutrients for biota. Therefore, in the absence of a more comprehensive indicator or experimental procedure, the gross analysis of sediment concentration will serve a vital function in evaluating the pollution status of sediments as well as the possible pollution potential of disposing such sediments into another aquatic environment.

In any particular geographical area, the baseline concentrations of most substances are probably equivalent to those from primary and secondary weathered minerals. The substances of concern probably exist largely within the mineral crystalline lattice. On the other hand, some of the inputs from land sources are probably adsorbed to charged particles, organic surfaces, and hydrous oxides of iron and manganese, or exist in soluble form in interstitial water. It is felt that pollutants which are not an inherent part of the mineral structure can pose potential short and long term water quality effects under different environmental conditions.

III. SEDIMENT COMPOSITIONS AND THEIR RELATION TO THE POTENTIAL EFFECTS OF DREDGING ACTIVITIES

The dredging operations and disposition of the dredged sediments into the open ocean, bays, estuaries, and inland waters has generated considerable concern for possible degradation of the water quality, especially the migration of trace metals, chlorinated hydrocarbons (chlorinated pesticides and polychlorinated biphenyls), and nutrients. The expected environmental consequences range all the way from "a temporary increase in turbidity during construction" (Army Engineer District Studies, New York, Philadelphia, and Honolulu, 1971), to "polluted material placed in deep waters at a more rapid rate than would result from natural processes" (Army Engineer District Studies, Buffalo, NY, 1972), to "loss of existing natural environment and disruption or loss of marine life in the area" (Army Engineer District Studies, Rock Island, Illinois, and New York, 1971 and 1972). In a recent report of the Corps of Engineers (Boyd, et al., 1972), the environmental impact associated with dredging is classified into two categories: direct effects on biological communities and indirect effects on biological activities. The indirect effects include alteration of the sedimentwater interface with subsequent release of biostimulatory or toxic chemicals, and the creation of turbidity clouds. The environmental impacts associated with open water disposal are categorized as short-term and long-term effects, the short-term effects including creation of turbidity, sediment buildup and oxygen depletion; and the long-term effects including the possible presence of biostimulants and toxins, and possible release mechanisms after deposition.

The effects of dredging on water quality in the Pacific Northwest have been studied by the Environmental Protection Agency (O'Neal and Sceva, 1971); dredging equipment, soil disposal practices, and sediment characteristics were considered. The U.S. Army Engineer District (Buffalo, NY, 1972) conducted a pilot sediment removal program during which valuable data were compiled concerning the effects of sediment removal on water quality and aquatic life--flora and fauna. Biaas (1968) studied the environmental effects of overboard spoil disposal in the Chesapeake Bay. His results showed that measurable quantities of suspended sediment extended as far as 4 km from the disposal site. The author concluded that the spoil on the bottom did not remain within the limits of the disposal area, and that dissolved nutrients contained within the spoil sediment pore-water were probably released to the environment. Cronin (1971) studied the gross physical and biological effects of dredging operations in the Upper Chesapeake Bay and found a substantial increase of total phosphate and nitrogen in water. Most other studies of dredging operations on water quality were directed

at the turbidity and oxygen depletion (Serruya, 1968-69; Cairns, 1967). Windom (1972) conducted laboratory and field studies to determine the effects of disposing polluted and nonpolluted sediments on salt marshes and on water quality, and concluded that until a significant variety of dredging situations have been studied, no generalized conclusion can be drawn on the water quality effects.

In the study of open water disposal, the main factors involved are the nature of the trace substances and nutrients present in the sediment and the possibility of their release. The environmental conditions of the receiving water such as pH, oxygen concentration, ionic strength, and concentrations of organic substances may well be the deciding factors in the fate of trace contaminants and nutrients upon deposition. The most serious contaminants present in sediments are heavy metals and chlorinated pesticides; polychlorinated biphenyls (PCB's) are also of importance. The sorption phenomena and possible release of these substances through mechanisms such as dissolution, ion exchange, complex formation, and many other factors are not well defined at present.

Trace Metals in Sediments

Extensive analyses of sediments for metal content have been carried out (Shaheen and Chantarasorn, 1971; Hauser and Fauth, 1972; Gross, et al., 1971; Horowitz, 1970; Kalinenko and Nevesskii, 1971; Yu and Lubchenko, 1970; Council on Environmental Quality, 1971; Landstrom, et al., 1967.) Hauser and Fauth (1972) verified the presence of higher concentrations of barium, cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver, and zinc in sediment. Mercury has received particular attention due to its transformation to the highly toxic methylmercury by benthic organisms (Suggs, et al., 1972; Fagerstrom and Zernelov, 1971; Jensen and Zernelov, 1969; SCCWRP, 1971).

Quantitative data on thirty metallic elements present in marine and lacustrine sediments have been presented by Landstrom (1967). In Southern California, extensive analyses of trace metals around major sewer outfalls have been carried out (Galloway, 1972). According to Jones (1972), the sources for these elements are accessory mineral sites, lithic fragments, surface coatings on the grains, and clay minerals. Sea water may also leach metals from volcanic rocks and the metals are then sorbed by the sediment (Suggs, et al., 1972; Fagerstrom and Zernelov, 1971). Zinc and other metals are also accumulated by the bottom fauna (Duke, et al., 1969; Phelps, et al., 1969; Hannerz, 1968).

Pesticides in Sediments

A large number of sediment analyses have shown the presence of pesticides, with the organochloro and organophosphorus ones representing the two largest families (Lyons and Soman, 1972; Svante and Berggren, 1970; Newland, 1969; Meyers, et al., 1970; Greve and Verschuuren, 1971). Many authors believe that once the pesticides are adsorbed by sediment particles they are not released to the environment, so that the sediments, in effect, remove pesticides from natural waters. This has been shown for aldrin (Leshinowsky, et al., 1970), toxaphene (Veth and Lee, 1971), and DDT (Graetz, et al., 1970).

Undecomposed pesticides in sediments may still act as insecticides (Veth and Lee, 1971); the microbial degradation of organophosphorus insecticides, such as parathion (Graetz, et al., 1970), has been reported; microbial attack of gamma-BHC and hydroxyatrazine has also been observed (Chesters and Lee).

Rowe, Carter, and Mason (1970) observed that the adsorption of dieldrin and endrin by bottom sediments is pH sensitive; the adsorption of endrin was also salinity-dependent. According to Chesters and Lee, the governing factors in pesticide adsorption by sediments is the pesticide concentration and the organic matter content of the sediment.

PCB's in Sediments

Although the presence of polychlorinated biphenyls (PCB's) in sediments had already been observed in 1967 (Svante and Berggren, 1970), systematic studies have been carried out only recently. Papers presented at a 1972 A.C.S. Symposium on PCB's (Tasler and Munson; Berg, et al.; Yates, et al.; Flotard and Veith; Nimmo, et al.) reported on the ubiquitous occurrence and distribution of polychlorinated biphenyls in the aquatic environment. Scientists of the Water Resources Division of the U.S. Geological Survey (Yates, et al., 1972) found concentrations up to 3 mg/kg in bottom sediments. E.P.A. researchers (Nimmo, et al., 1972) monitored the extensive presence of a PCB, Arochlor 1254, in Florida coastal sediments; they found that a chronic exposure to sublethal concentrations of the material caused necrosis of hepatic cells in fish, shrimp, and oysters.

Organic Material in Sediments

The sources of organic matter in sediment usually originate from atmospheric and riverine introduction of pollutants, industrial and domestic wastes, agricultural and mining runoffs, accidental spillages, decompositional debris from marine organisms, especially those bioresistant, metabolic end-products from natural biota. Furthermore, there are numerous forms of intermediates derived from the interactions among various decomposed products resulting from living organisms. These terrestial stable organic molecules can be treated as products at different levels and stages in the geochemical diagenetic process of simple bioorganic molecules (Yen and Sprang, 1972). On the average, the organic contents in marine sediments are only a minor part of the composition. The organic carbon contents range from 0.1 to 10% (Rashid, 1969). However, regardless of their quantities, the organic molecules may be the crucial factors in controlling the fate of trace contaminants in marine sediments.

Organic molecules in marine sediments possess reactive functional group sites. The inorganic cations such as heavy metals can be coordinated to these sites to form stable linkages, and in this manner the marine sediments can take up metals, thus functioning as a sink. The exchange capacity of sediments is partly dependent on the organic component of the sediment.

The metal complexes and chelates thus formed could further coordinate inorganic anions at the apexes. Inorganic anions such as sulfate, chloride, phosphate, etc., could easily be attached or detached under variable redox conditions. In this fashion the transport or the migration of nutrition-important anions such as phosphate is regulated by the sediments.

The inorganic components in sediments behave as chromatographic substances. Upon contact the organic molecules could be either adsorbed or fractionated, precipitated, and eluted. In this fashion simple organic and inorganic molecules from the coastal and estuary waters could be adsorbed and released. Heavy metals can also be liberated from sediment to ocean waters; accordingly, the marine sediment in this sense can be a source for heavy metals, although this would only occur under special conditions.

Organic substances in sediments may consist of amino acids, pesticides, carbohydrates, polysaccharides, lipids, browning reaction products, alkaloids, humic acids, hydrocarbons, pigments, bitumens, and kerogens. In addition to the naturally occurring molecules, synthetic pollutants such as PCB's and spilled oil are also present. Portions of the organic matter may be refractory products from biological degradation which are no longer biodegradable.

Association of Fine Particulates and Trace Pollutants

Trace contaminants, metals pesticides, and PCB's are associated with and concentrated in the colloidal particle size fraction of recently-formed sediment (Chen, 1974). In fresh water, storm water, or wastewater effluent, hydrolyzed trace metals and organic matter can be adsorbed onto colloidal particles such as metal oxides and hydroxides, microbial detritus, clays, and macro molecular protein, and in some instances react chemically with colloid surface groups.

Particulates from input sources can be divided into two groups: settleable and nonsettleable. Upon entering estuarine water, pollutants in the settleable particulates may remain in the solid form and reach the floor of an estuary or harbor through sedimentation. They may remain associated with detrital materials or redissolve. Nonsettleables are of the size of colloidal particles, which range roughly from 0.1 to 1.0 micrometers. A portion of nonsettleable colloids can be accumulated in the sediment of harbor waters through the combined physicochemical forces of coagulation and sedimentation.

Interactions of Chemical Constituents in Sediment

An understanding of the sorption and release mechanisms of trace substances can only be achieved by considering the sediment as a dynamic system where the composition and geochemistry of the bulk materials vary through:

- (a) diffusion of ions within the sediment
- (b) reactions occurring in the interstitial (pore) water
- (c) humic binding forces
- (d) organic/inorganic complexes
- (e) nutrient mobilization
- (f) reactions at the sediment-water interface
- (g) mobility of cations from the sediment
- (h) water-sediment exchange reactions

Many authors have studied the composition and geochemistry of sediments in toto. So, while Mun and coworkers(1967) studied the inorganic components of sediments, Puey (1967) gave a detailed description of the organic materials present. A present-day sediment consists of inorganic clays, silts, and sands, organic substances from the slow degradation of biological materials, and man-produced materials, either adsorbed from water or deposited directly and incorporated (Army Engineer District, New York, n.d.). Large bacterial populations are also present (Esernoglou and Anthony, 1971), together with a diversity of benthic organisms (Cairns and Dickson, 1971), which are affected by the presence of industrial or municipal wastes. Some organisms such as tubified worms are positively affected (Wagner, 1968), while the effect on Foraminifera is negative (Schafer, 1968).

This diversity makes the chemistry of sediments very complex. Numerous chemical characterizations of bottom deposits have been presented in the literature (Holt, et al., 1970; Grissinger and McDowell, 1970). A sediment presents a vertical variation in composition related to the physical structure and the redox conditions which can be monitored by color difference (Sanger and Gorham, 1971), or by measuring the nature and amounts of the gases adsorbed and released (Bean, 1969; Pamatmat and Fenton, 1968).

As already mentioned above, the composition and chemistry of sediments are the products of a series of individual events which have

received specific attention and can be considered separately as follows:

1. Diffusion of Ions within the Sediment

The diffusion of ions in unconsolidated sediments is influenced by several environmental variables, such as redox potential, chemical interactions, and physical structure. Ion diffusion coefficients in marine sediments have been determined using radioactive isotopes (Duursma and Bosch, 1970). The rates range from one-half to one-twentieth of those applying to diffusion of ions and molecules in free solution, and may be predicted from the porosity and the path tortuosity of host sediments (Manheim, 1970).

2. Interstitial (Pore) Water

The chemistry of pore waters and the relationships with the sediments retaining them has been studied by Sharma (1970) for glaciomarine sediments of Southeast Alaska. The author observed that the total ionic concentration is generally less in interstitial water than in overlying water, and intermixing is negligible. Other authors (Presley, et al., 1967; Bischoff and Lung, 1971) confirmed Sharma's conclusions but found that some ions, and especially manganese, were more concentrated in the pore water. Dobbins (1970) further observed that cationic concentrations in interstitial water decreased with depth in estuarine sediments.

3. Humic Binding

The interaction of metallic ions with humic acid yields complexes comparable to the ones formed by EDTA (Koshi, et al., 1969). Iron, copper, zinc, and lead complexes have been identified (Sieburth, 1971), and the exchange capacity of the humic fraction has been found of the order of 2.5 meq/g (Rashid, 1969).

4. Organic/Inorganic Complexes and Nutrient Mobilization

The subject of nutrient (P,N) mobilization from sediments is of great interest because of its relation to eutrophication. Notwithstanding the numerous studies carried out, no agreement on the role of sediments has been reached. The function of sediment as a reservoir of nutrients for the overlying water has been affirmed by McKee and coworkers (1970); other researchers, on the other hand, have considered sediment only as a sink with respect to phosphorus (Holt, 1969; Kinimel and Ling, 1970; Shapiro, 1970; Committee on Nutrients in Water, 1970). The mechanism of phosphorus retention by sediments has also not been cleared; some authors believe that organisms (McKee, et al., 1970), or at least organic/inorganic complexes (Schindler, et al., 1971), are the primary concentrators; others have postulated a gel complex of hydrated iron oxide (Shukla, et al., 1971).

5. Reactions at the Sediment-Water Interface The sediment-water interface is the site of oxidation-reduction reactions between dissolved oxygen and sediment components. Schindler and Honick (1971) monitored the redox potential at a sediment-water interface over a six-month period. Bouldin (1968) derived equations describing the diffusion of oxygen across the interface under steady and non-steady state conditions.

6. Mobility of Cations from the Sediment (Water-Sediment Exchange Reactions)

The mobility of cations, and especially of heavy metals, from sediments has a direct bearing on the environmental impact of dredge spoil disposal. The release of toxic elements by displaced sediments would make them hazardous to marine life (or human life, through the food chain) if disposed of in deep waters, and would pollute ground waters over a prolonged period of time if disposed of on land sites in contact with aquifers.

Lee (1970) assessed the possible factors involved in the exchange of elements and compounds between waters and sediments in a critical study. The exchange reactions were described as occurring under physical (hydrodynamic) control, chemical control, or biological control. The chemical aspect was also considered in detail by Carroll (1959).

Metals migrate within a sediment to oxidized or reduced zones according to the mobility and solubility of the respective ions. Thus Bonatti and coworkers (1971) found that Mn, Ni, Co, and La were concentrated in the upper oxidized zone (Eh + 100 mV) of a hemipelagic sediment, while Cr, V, and U concentrated in the lower reduced zone (Ed - 400 mV). Laboratory studies have shown that Cu, Fe, Mn, and Zn were released by sediment under anaerobic conditions, but not under aerobic ones (Chen and Yen, 1972). These results confirmed the finding by Mortimer (1971) that Fe and Mn may be released by sediment only when the oxygen concentration at the sediment-water interface falls below 1 or 2 mg/l.

The exchange of elements between sediments and water may be studied using radioactive tracers (Duke, et al., 1968; Kudo and Gloyna, 1971). Except for mercury, which may be released from sediments via biological transformation into methyl mercury (Fagerstrom and Zernelov, 1971; Jensen and Zernelov, 1969), the only elements found to exhibit a significant migration from sediments into overlying waters were Ca (Sharma, 1970; Presley, et al., 1967; Bischoff and Lung, 1971; Dobbins, 1970) and Mg (Monais, 1970), the latter in lesser degree; Lobchenkg and Kaplin (1968) determined an exchange rate of Ca⁻⁺ by Cu⁻⁺ or Zn⁺⁺ of 1 - 1.7 meq/g.

The most extensive reviews of sediment chemistry in relation to their pollution potential have been those of Keeley and Engler (1974) and Lee and Plumb (1974). However, both reports conclude that no definitive predictor relationships of sediment chemistry and pollution capabilities under different environmental conditions are possible at present. Extensive research carried out by the Army Corps of Engineers Waterways Experiment Station and its contractors on dredged materials research may soon be able to provide some definitive answers on the relationships of sediment chemistry and potential impacts of dredging activities.

IV. METHODOLOGY FOR SEDIMENT ANALYSIS

Analysis of sediment is substantially different from that of water and sewage. The U.S. Environmental Protection Agency has published a manual for the analysis of freshwater sediments (December, 1969); however, no publication can be found for the complete chemical analysis of marine sediments. The following section is a summary of experimental procedures which have been modified after "Standard Methods" (1971) and the EPA manual on freshwater sediment, adopted for the analysis of marine sediments.

A. Moisture Content

Place a known weight of sediment in an aluminum foil dish in an oven at 105°C for 24 hours or longer, until constant weight is obtained. The moisture content is expressed as:

% moisture content = wet wt. - dried wt. % wet weight X 100

B. Volatile Solids Content

Dry a known weight of sample in a crucible in an oven at 103° C for one hour and weight it. Then ignite the dried sample in a muffle furnace at 550° C for 15 minutes and weigh again.

mg/kg volatile solids = $\frac{dry wt. - residue}{dry weight} \times 10^6$

C. 0il and Grease Content

Extract a known weight of sediment with petroleum ether. Separate the mixture and transfer the extract to a flask of known weight. The extract is then evaporated on an oil bath at 70° C until constant weight is obtained.

mg/kg oil and grease = g dried weight X 10

D. Immediate Oxygen Demand

Measure 2 - 3 g sample in a 300 ml D0 bottle and fill up with distilled water. Add 2 ml manganese sulfate solution followed by 2 ml alkali-iodide-azide reagent well below the surface of the liquid and stopper it. After 15 minutes, add 2.0 ml conc. H_2SO_4 and immediately titrate with 0.0375 N sodium thiosulfate solution to a pale straw color. Use starch as indicator. Prepare a blank and treat it the same way.

 $\frac{(a-b) \times 0.0375 \times 8000}{g \text{ dried weight}}$

a: ml sodium thiosulfate solution used for sample
 b: ml sodium thiosulfate solution used for blank

E. Chemical Oxygen Demand

Weigh approximately one gram of sediment in a round-bottom flask; add 50 ml distilled water, 1 g of $HgSO_4$, 25 ml 0.250 N potassium dichromate solution, and 75 ml conc. H_2SO_4 . Reflux the mixture for 2 hours, cool and dilute to about 350 ml. Titrate the excess dichromate with ferrous ammonium sulfate, using ferrion as indicator. Reflux in the same manner with blank consisting of 50 ml distilled water and reagents.

$$\frac{(a - b) c \times 8000}{g dried wt}$$

a: ml ferrous ammonium sulfate solution used for sample
 b: ml ferrous ammonium sulfate solution used for blank

c: normality of ferrous ammonium sulfate solution

F. Nitrogen

Weigh about 1.5 g sample in a Kjeldahl flask. Add 180 ml distilled water and 15 ml phosphoric buffer solution. Distill into a flask containing 30 ml boric acid until 120 ml is collected. Titrate the solution with 0.02 N H_2SO_4 to determine the ammonia nitrogen content. Add 30 ml digestion reagent to the remaining portion and heat under a hood for about 30 minutes. Cool and dilute to 180 ml. Neutralize with sodium hydroxide-sodium thiosulfate reagent. Distill and collect 120 ml distillate into a flask containing 30 ml boric acid. Titrate with

 $0.02 \text{ N} H_2SO_4$ to determine the organic nitrogen content. Carry a blank determination on distilled water and reagents.

$$mg/kg N = \frac{(a - b) c \times 14,000}{g dried wt}$$

a: m] H_2SO_4 solution used for sample b: m] H_2SO_4 solution used for blank c: normality of H_2SO_4 solution

G. Total Phosphorus

1. Digestion

Place about 1 g of well-mixed sample into a Teflon beaker. Treat it with 4 - 5 drops of HF, 5 ml HNO₃, and 3 ml HClO₄ solution. Digest the mixture on a hot plate until solution is almost dry. Cool and add 20 ml of distilled water, then centrifuge the digested sample. Collect the supernatant in a 250 ml Teflon beaker. Adjust pH to 0.2 - 0.3 with 6 N HNO₃ and pass through a cation exchange resin, such as ANGC-243 (manufactured by IONAC Chem. Co.). Collect the eluate in a beaker, adjusting the flow rate to no greater than 5 ml per minute. After passing the liquid through the column three times, the solution is then neutralized with 6 N NaOH and 6 N HNO₃ to pH 7. Dilute the solution to exactly 200 ml. Regenerate the ion exchange resin with 1:1 HCl and wash with distilled water.

2. Determination

Pipet 50 ml of digested sample. Add 2.0 ml molybdate acid solution and mix by swirling. Add 2.0 ml sulfonic acid solution and mix again. After exactly five minutes, measure the absorbance vs. the blank at a wave length of 690 nm. Prepare a calibration curve by using a suitable volume of standard phosphate solution.

H. Sulfide (Total)

A titrimetric method is used for sulfide determination. A 1-liter reaction flask and two 250 ml absorption flasks are necessary. The procedure is:

1. Measure 5 ml zinc acetate and 95 ml distilled water into each of the two absorption flasks. Connect the reaction flask and two absorption flasks in a series and purge the system with N_2 gas for at least 2 minutes. Transfer about 5 g of sediment into the reaction flask and add 500 ml distilled water with complete mixing.

2. Acidify the sample with 10 ml conc. H_SO and replace the prepared 2-hole stopper tightly. Pass N₂ through the sample for one hour.

3. Add 10 ml of iodine solution and 2.5 ml conc. HCl to each of the absorption flasks; stopper, and shake to mix thoroughly.

4. Transfer contents of both flasks to a 500 ml flask and back-titrate with 0.025 N sodium thiosulfate titrant, using starch solution as indicator. Run a blank using the same reagents.

$$mg/kg S = \frac{(m1 \text{ iodine - m1 } Na_2S_2O_3) \times 400}{g \text{ dry weight}}$$

I. Total Organic Carbon

Weigh about 5 grams of sediment sample in a 150 ml beaker. Adjust pH below 2 by adding 1:1 HCl; then bubble N through the sample for 10 minutes. Dry the sample in the beaker for 24 hours in the temperature range of 70° to 100° C. Weigh a portion of 0.5 - 1 g of dry sample into a special TOC crucible. Determine TOC content using LECO TC-12 Automatic Carbon Determinator.

J. Metal Analysis

1. Sample preparation

a. Digestion (except Hg and As):

Weigh about 1 g of sediment into a platinum crucible. Add 5 ml HF and 30 ml of 1:1 HNO_3 . Cover with aluminum foil and digest on a sand bath until the remaining residue is about 3 ml. Add 20 ml of conc. HNO₃ and continue the digestion until the solution becomes clear. Cool³, filter, and dilute to 100 ml.

b. Digestion for mercury:

Weigh about 5 g of well-mixed sample into an Erlenmeyer flask. Treat it with 20 ml conc. HNO_3 and 15 ml 2% $KMnO_4$. Seal the flask and heat it in a constant-temperature water bath at $70^{\circ}C$ for 12 hours. Allow the flask to cool and then centrifuge the digested sample. Collect the supernatant in a 100 ml volummetric flask and add 1:1 solution to the mark.

c. Digestion for arsenic:

Weigh an appropriate amount of well-mixed wet sample (from 0.5 - 5.0 g of sediment) into a 250 ml round-bottom digestion flask with two necks, and add 40 ml of conc. nitric acid, 5 ml of conc. sulfuric acid, plus small glass beads as boiling stones. The flask is heated on an electric heating mantle at a temperature of about 100 C under a fume hood. Digest it in this reflex system overnight, until the solution is clear, or stop the condenser cooling water and increase the flask heat to fume off all the nitric acid--until strong fumes of sulfuric acid are evolved. After cooling under the hood, use distilled water to wash the sample into an Erlenmeyer flask having a 24/40 ground joint flask. The final volume of washed sample must be about 35 ml. Acidify the sample with 5 ml conc. HCl; add successively, with thorough mixing after each addition, 2 ml 15% KI solution and 8 drops, 0.4 of 20% SnCl₂ reagent. Allow 15 minutes for reduction of arsenic to the trivalent state, then follow the standard SDDC method for the generation of arsine.

2. Analytical Methods

Basically three different methods were used for this study according to the suitability of the method for different metal analyses.

- 1. Atomic absorption method for the analysis of Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn.
- 2. Flameless Atomic Absorption method for Hg analysis.
- 3. Silver Diethyl-dithiocarbamate method for As analysis.
- K. Chlorinated Pesticides and Polychlorinated Biphenyls (PCB's) (Official Method of Analysis of the Association of Analytical Chemists, 1970; Reynolds, 1969; Goerlitz and Law, 1971; Richard and Kirk-Othmer, 1964; Armur and Burke, 1970; Snyder and Reinert, 1971)

The overall method includes sample extraction, cleanup, partitioning concentration, injection to the gas chromatographic columns, identification and calculation of chlorinated pesticides and PCB's peaks from the gas chromatograms.

Reagents:

- 1. Nanograde Hexane
- Nanograde Ethyl Ether
- 3. Pesticide Quality Petroleum Ether

- 4. Pesticide Quality Acetonitrile
- 5. Florisil 60--100 mesh stored at 130°C
- 6. Hg--Analytical Reagent Grade
- 7. Anhydrous Sodium Sulfate Granular (Baker)
- 8. Celite
- 9. KOH--Analytical Reagent Grade
- 10. Ethanol

Procedure:

- 1. Determine moisture content of sediment on separate sample.
- 2. Weigh 15.0 g sediment as received.
- 3. Extract 1 hour with 300 ml of a 3:1 mixture of trile: water using a reciprocating shaker. Include sample water in ratio.
- 4. Filter through Whatman #4 using 9 cm Buchner funnel filter, adding 5 g Celite as filter aid.
- 5. Rinse the sample with 20 ml acetonitrile and filter it as in step 4.
- 6. Transfer the filtrate to 1000 ml separatory funnel containing the following: 50 ml petroleum ether and 10 ml NaCl saturated solution.
- 7. Shake the mixture for one minute, then add 200 ml water and shake again for 30 seconds. Collect the aqueous phase in a second separatory funnel and the solvent phase in a 250 ml Erlenmeyer flask. Repeat extraction of the aqueous phase using 50 ml petroleum ether.
- 8. Discard the aqueous phase and combine the petroleum ether extracts into K.D. evaporator and evaporate on steam bath to cs. 7 ml.
- 9. Prepare a 400 x 20 mm column with 15 g acitvated florisil (60/100 mesh) topped with 15 g anhydrous sodium sulfate. Wash with 70 ml petroleum ether. When petroleum ether wash sinks through the top surface of sodium sulfate, add the extract and immediately begin eluting with 175 ml 100% petroleum ether. Change receiver, discarding initial wash.
- 10. Add 100 ml 6% ethyl ether in petroleum ether when previous elution fluid just touches the top surface of anhydrous Na_2SO_4 surface; change receivers.

- 11. Add 150 ml 15% ethyl ether; petroleum ether (15 + 85) when elution fluid sinks and collect in a third receiver.
- 12. Evaporate each eluate to 10 ml in K.D. evaporator.
- 13. The eluates are run separately on a gas chromatograph equipped with a Ni 63 electron capture detector. The columns were 6 feet long and $\frac{1}{2}$ inch I.D. packed with 5% DC-200; 7.5% QF-1 and 1.5% OV-17; 1.95 QF-1. All columns were preconditioned at 250°C with flow of N₂ gas in a few mls/minutes for 36 hours.

PCB's and most DDE are recovered in 0% ethyl ether fraction. Most organochlorine compounds are recovered in 6% fraction. Endrin and Dieldrin are recovered in 15% ethyl ether and petroleum ether fraction. If sulfur is found to be present in large amounts and interfering with determinations of other components, the extract is treated with mercury to form mercury sulfide for sulfur removal.

In the determination of PCB's and DDE, if some extra unknown interfering peaks are observed in 0% ethyl ether, petroleum ether function, the 0% extract is further treated with Dehydrohalogenation reagent. Chemical conversion and breakdown of some of the interference to their corresponding low boiling points takes place while PCB's remain unchanged. DDE is also unaffected.

V. SEDIMENT DISTRIBUTION OF POLLUTIONAL PARAMETERS IN SAN PEDRO BASIN AND LOS ANGELES-LONG BEACH HARBORS

The sediment compositions of Southern California coastal waters have been previously reported (SCCWRP, 1973; Galloway, 1972; Bruland, 1974). Studies by Galloway (1972) show that most trace elements, with the exception of iron, manganese, and cobalt, occur in substantially higher concentrations in the proximity of sewer outfalls, even though the accumulation in the sediments is estimated to be around 10 to 15% of the total input (Hendricks and Young, 1974). Bruland (1974) studied the anthropogenic fluxes of Pb, Cr, Cd, Zn, Cu, Ag, V, and Mo into the sediments of the San Pedro, Santa Monica, and Santa Barbara Basins and found significant contributions from aerial fallout, storm and river runoff, and sewage input. Also, quantitative data on the sources of input, and models of pollutant transport have been more extensively studied than most other coastal waters adjacent to population centers. However, little information is available on the sediment compositions of harbor waters and their relationship to the pollution of adjacent ocean waters.

Baseline sediment compositions on the Los Angeles Harbor and the San Pedro Basin were studied for three purposes: (1) to evaluate the

natural background sediment composition of the San Pedro Basin; (2) to assess the potential enrichment factors if the dredged sediment is redeposited in San Pedro Channel (long a dump site for industrial wastes); and (3) to identify the major sources of pollutant inputs into the channel and their mode of transport.

In this study, three types of core samples were used. Box cores were used for obtaining samples in San Pedro Basin. Grab samplers were used in most surface samples for Los Angeles Harbor, and drilling rigs were used to obtain deep sediments up to 40 feet in depth in the proposed Liquefied Natural Gas (LNG) route.

Each sample was analyzed for roughly 35 parameters. It is fully realized that not all of these parameters have significance in determining pollution potentials of sediments. This is especially true for some of the conventional parameters used in water and wastewater characterizations.

San Pedro Basin

A total of 24 box cores were collected in San Pedro Basin between Los Angeles-Long Beach Harbor and Santa Catalina Island. In addition, five box cores were collected beyond Catalina Island. Each core sample was subdivided into several sections, depending on the length of the core. In general, samples were subsectioned according to the length: 0 - 2", 3 - 6", 7 - 12", and 1 to 2 feet. Box cores were collected from the <u>Velero IV</u> by the personnel of the Harbor Environmental Projects of theAllan Hancock Foundation at USC under the leadership of Dr. Dorothy Soule and Mr. Mikihiko Oguri.

From the data presented in Figures 1 to 9, a list of approximate natural background levels of trace metals in San Pedro Basin can be established. These are shown in Table I.

It should be realized that most sediments of San Pedro Basin are substantially higher than the values presented in the table. In addition, the so-called natural background levels are not uniform throughout the area. It simply represents the lowest concentration that can be found. Another estimate may be adduced from the natural rock and soil compositions in the drainage areas producing the surface runoff to the basins. In Figures 3 and 8, the concentrations of chromium and nickel in the stations beyond Catalina Island are found to be substantially higher than most of the other sediments studied. The geological formations or other problems involved in the sampling process rather than pollution probably account for these abnormally high concentrations in such areas.

In Figures 10 to 17, we have tried to construct some concentration contours of trace metals based on the data obtained. In constructing such isoconcentration lines, both concentrations from sediment analysis

and water depth are considered. It should be fully realized that no rigorous mathematical model was employed. The intuition and personal judgement of the authors, using the data available, was the main method used. Therefore, no absolute accuracy is implied in these concentration contours.

In Figures 18 to 25, the general characteristics of the sediments are presented. All the sediments analyzed fall into the category of stable decomposed organics as classified by Ballinger and McKee (1971). Immediate oxygen demand is generally low in comparison with more active decomposing sediment and Kjeldahl nitrogen is almost equivalent to organic nitrogen in each case. This indicates that most of the nitrogen in these sediments is tied up with refractory organics with little possibility of further decomposition.

The distribution patterns of chlorinated hydrocarbons such as chlorinated pesticides and polychlorinated biphenyls are significantly different from those of trace metals. Since chlorinated hydrocarbons are not the natural constituents of sediment, their appearance indicates the influence of man's activities. The distribution of total DDT as shown in Figure 31 indicates the predominant influence of the sewer outfall; however, the input from the Los Angeles-Long Beach Harbors cannot be ruled out. The distribution of PCB's and Dieldrin shows that the contribution from White's Point sewer outfall may be small in comparison with those from the harbor complexes. This is not out of the ordinary, since the harbor complex is the receptacle of many industrial wastewaters.

TABLE I

NATURAL BACKGROUND LEVELS OF TRACE METALS IN SAN PEDRO CHANNEL

Pb 20 – 25	Element	Natural Background Level (mg/kg)
Ni 15 - 20 7n 30 - 35	Cd Cr Cu Fe Pb Hg Ni	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Los Angeles-Long Beach Harbors

More than forty sampling stations inside the harbor complex were selected. Figures 37 and 38 show the locations of these sampling points. Grab samples were collected from the <u>Golden West</u> by the personnel of the Harbor Environmental Projects of the Allan Hancock Foundation. The results of the sediment analysis are shown in Tables 2 to 4. In many cases, stations were sampled more than once to observe the effects of bottom scouring, circulation, and sediment transport during the elapsed period. Even though replicate analyses have shown narrow ranges of analytical results, substantial differences in chemical compositions were shown for the sediments collected about one month apart. The slight variations in the locations of the sampling points may account for the major part of the difference, due to the non-homogeneity of the surface sediments.

Sediment samples from sampling stations shown in Figure 38 were obtained quite close to the bank instead of the midchannel. The relative intensity of contamination of the surface sediments in the harbor complex is shown in Figure 39. The pollution status of harbor sediments is divided into a relative scale of 10, with 1 the most contaminated and 10 the least polluted. The average chemical compositions are shown in Table 5. The ranking was based mainly on the content of total organic carbon and a few toxic metals such as mercury, zinc, and cadmium. The reason for using total organic carbon as a major parameter in determining the pollutional status is the linear relationship of total organic carbon to other pollutional parameters. Even though the harbor sediments in general contain less TOC than the surface sediments of San Pedro Basin, the harbor sediments generally contain substantially higher values of immediate oxygen demand. The other noticeable difference is the PCB content. While the San Pedro Basin contains relatively low concentrations of PCB 1254 and 1260, and no 1242, the harbor surface sediments contain high concentrations of all PCB's.

Proposed Route for the Transport of LNG in Los Angeles Harbor

Sediment samples from the proposed LNG route were collected by Dames and Moore, environmental consultants, using drilling rigs. Each core was subsectioned at the interval of 3 feet and homogenized prior to analysis. The positions of corings are shown in Figure 38. Particle size distributions are listed in Table 6. Each core was divided into many sections, each at 3 to 5 feet, depending on the property of the sediment. The surface sediment of each core, i.e. the first column of each core shown in Table 6, was analyzed for physical and chemical characteristics which are tabulated from Tables 7 to 9. Most of the analytical results from these sediments cannot be compared with those of grab samples, because grab samples collect the top few inches of sediment while the samples from piston cores have been homogenized from the top 3 feet. Since the surface sediments are the most contaminated, the homogenized samples are in effect diluted many times by the subsurface sediments which are less contaminated. Therefore, these data are not used in zoning the pollution status of the harbor complex.

The profiles of pollutants in the surface sediments are shown in Figures 40 to 42. It is obvious that the concentrations of pollutants decrease rapidly from Station I, which is close to the Terminal Island Sewage Treatment Plant, and increase again toward the breakwater region. Around the sewer outfall, most of the sediments are close to silty clay, and around the breakwater area, mostly sandy silt. The middle portion contains mostly silty sand. The particle size distribution may partially account for the levels of pollutants in the sediment.

Sediment Characteristics

No effort has been made to locate the specific associations of pollutants in the sediments; however, many interesting interrelationships of pollutional parameters can be found from the results of chemical analysis. This is especially true for the linear relationship exhibited by trace metals and total organic carbon, total volatile solids, or sulfide and trace metals. Trace organics such as chlorinated pesticides and polychlorinated biphenyls show little relationship to other parameters even though sediment transport and the fates of particulates seem to be the predominant factors affecting the distribution of pollutants. No effort was made to determine the grain size distribution of sediments in the San Pedro Basin and surface sediments of the harbor complex.

From the depth variations of most parameters, it seems relatively safe to conclude that input from man's activities has apparently altered the sediment characteristics--even in the deep ocean, though such types of influence are generally deemed to be minimal.

The concentration of trace metals in the channel transects are closely related to other pollutional parameters such as COD, TOC, TVS, and sulfide. The most interesting part is the linear relationship of metal concentration vs. water depth. Such a relationship implies the transport of fine grain sediment from land sources into the deep channel. Since the background levels around the harbor entrance are similar to those of natural sediment, it is reasonable to assume that a combination of "slumping" and slow settling of solids from the L.A. County sewer outfall, as well as adsorption by organic matters and clay particles of pollutants out of solution, is a major source of pollutant transport in the San Pedro Channel. While the total organic carbon. (TOC) of the Los Angeles-Long Beach Harbor sediment is generally below 2%, the TOC in the San Pedro Channel generally ranges from 2 to 4 %, both on a dry weight basis. Analysis of organic components of the surface sediments of the harbor complex and San Pedro Basin indicates that the ocean sediments contain more stable organic components such as humic substances, whereas harbor sediment contains a higher fraction of fulvic acids.

Since most pollutants entering the sediment are associated with particulates in one way or another, their position in the sediment can probably be classified into several functional groups: sorbed on the surface or particulate matter; bound in fulvic and humic materials; precipitated as metal sulfide; attached to an oxide coating; sorbed on the exchange sites of clay minerals; or incorporated in the detrital organic or mineral phase. The major fraction within the crystalline lattice of mineral or natural sediment will probably not be released upon disposal. Changes in redox, pH, or composition of solution media probably bring about changes in the availability of trace substances. However, no definitive information can be found.

VI. SUMMARY AND CONCLUSIONS

With the exception of very few localities, most surface sediments in the Los Angeles-Long Beach Harbors and San Pedro Basin are grossly contaminated. The fate of these substances in the sediments and their long-term effects are not well understood at present. The question of whether sediments act as sink or as a source of pollutants may depend greatly on the changes of environmental variables. There are very few remedies available to undo the pollution of the past, as the selective removal of pollutants from sediments is almost impossible. Therefore, emphasis should be placed on prevention of these types of irreversible processes of pollution.

The sediments of San Pedro Basin are almost as polluted as those of the Los Angeles-Long Beach Harbors. In addition to the practice of ocean dumping of industrial wastes within the study area, the sewage discharge from White's Point may account for a substantial amount of pollutants. The past practice of designing sewer outfalls for the diffusion, dilution, and dispersion of sewage might work well for dissolved substances; however, such a practice may not be very effective for the problems associated with particulates. The sediment transport processes may concentrate pollutants in the deep channel and may reverse the planned function of ocean outfall to disperse the pollutants. The ecological consequences of accumulating contaminants in the deep basin cannot be properly evaluated at present, because little information is available on the effects of these pollutants on the biota in the ocean bottom.

Data from this study show that the Los Angeles County Sanitation District sewer outfall at White's Point has been the major source of trace metals and chlorinated pesticides such as DDT, while the harbor complex contributes more of the polychlorinated biphenyls.

In many parts of the Los Angeles Harbor, which is relatively contaminated in comparison with the neighboring harbor, the most effective way (and perhaps the only way) of removing pollutants from the ecological system seems to be the excavation of sediments with proper disposal or productive usage of dredged materials after treatment. Ocean disposal of these sediments will probably add to the heavy accumulation of pollutants on the ocean bottom. Ocean disposal should be allowed if evidence shows that such disposal practice causes no harmful ecological impact.

LITERATURE CITED

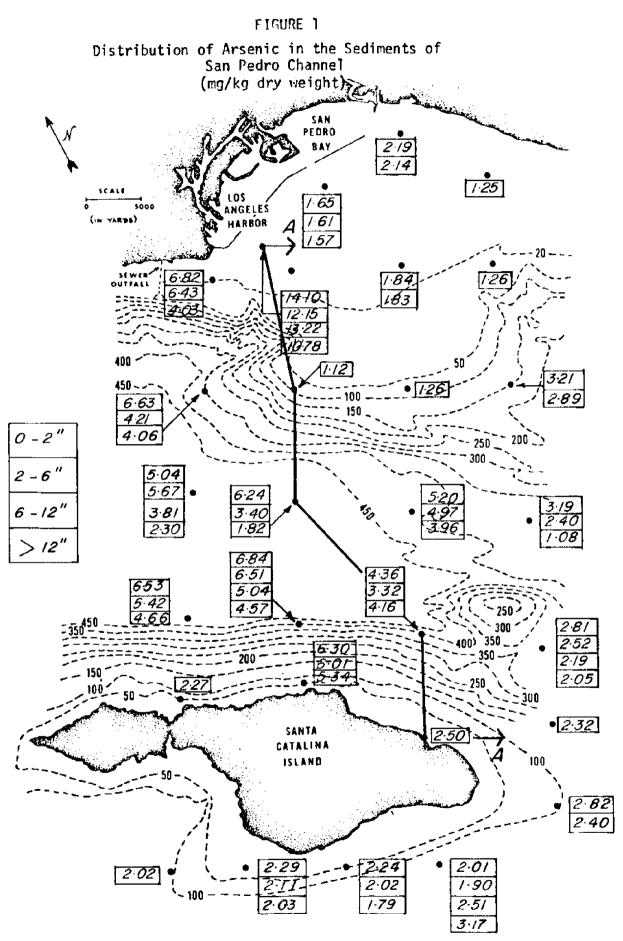
- American Public Health Association, NY, 1971. "Standard Methods." 13th Ed.
- Armur and Burke, 1970. "Separating PCB from DDT and analogs." J.A.O.A.C., 53:761-768.
- Army Engineer District, Buffalo, NY, May 1972. "Erie Harbor, PA, maintenance."
- Army Engineer District, Honolulu, HA, Pacific Ocean Division, Sept. 1971. "Kaunakai Harbor maintenance dredging, Molokai, HA."
- Army Engineer District, Buffalo, NY, Jan.1972. "Lorain Harbor, Ohio, maintenance."
- Army Engineer District, NY, "Maintenance of the Raritan River, NJ, navigation project."
- Army Engineer District, NY, Jan. 1972. "Maintenance of Tarrytown Harbor, NY, navigation project."
- Army Engineer District, Philadelphia, PA, May 1971. "Navigation project, Briston Marine, Delaware River, Bucks City, PA."
- Army Engineer District, Rock Island, IL, May 1971. "Navigation project, Mississippi River, commercial boat harbor, Fort Madison, IA."
- Army Engineer District, Buffalo, NY, June 1972. "Pilot sediment removal program, Cuyahaga River."
- Army Engineer District, May 1971. "Port Jefferson Harbor, NY, navigation project."
- Army Engineer District, Buffalo, NY, Jan. 1972. "Rochester Harbor, Monroe City, NY."
- Ballinger, D.G. and G.D. McKee, 1971. "Chemical characterization of bottom sediments." J. Water Poll. Control Fed., 43:216-227.
- Bean, D.J., 1969. "Seasonal variations in free gas ebullition from lake sediments." M.S. Thesis, U. Rhode Island, Kingston, RI.
- Berg, O.W. et al., Sept. 1972. "PCB contamination of the aquatic environment in Ontario." Preprints, Water, Air, and Waste Chem. Div., Am. Chem. Soc. 164th Natl. Meeting, NY, p. 59.

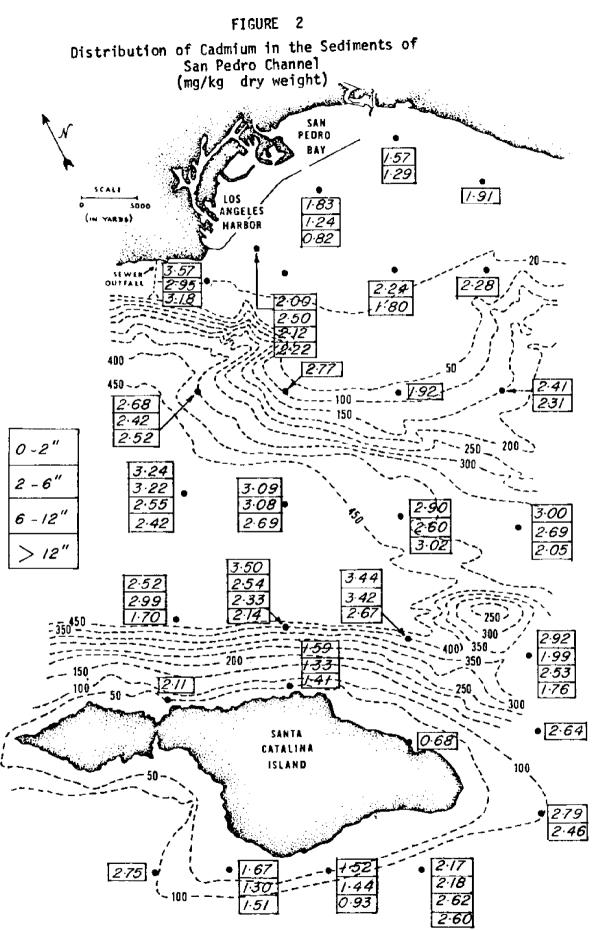
- Biggs, R.B., 1968. "Environmental effects of overboard spoil disposal." ASCE Proc. J. of Sanitary Engineering, 94 (SAE3), Paper 5979: 477-87.
- Bischoff, J.L. and T. Lung, 1971. "Pore fluids of recent marine sediments." J. Sed. Petrol., 41 (1008).
- Bonatti, E., D.E. Fisher, O. Joensuu, and M.S. Rydell, 1971. "Post depositional mobility of some transitional elements, phosphorus, uranium, and thorium in deep sea sediments." Geochim, Cosmochim Acta, 35(189).
- Bouldin, D.R., 1968. "Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface." J. Ecol., 56(77).
- Boyd, M.B., R.T. Saucier, J.W. Keeley, R.L. Montgomery, R.T. Brown, D.B. Mathis, and C.J. Guice, 1972. "Disposal of dredge spoil." Tech Rept. H-72-8, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Bruland, K.W., 1974. "History of metal pollution in Southern California coastal zones." Env. Sci. and Tech., 8(5): 425-435.
- Cairns, J., and K.L. Dickson, 1971. "A simple method for the biological assessment of the effects of waste discharges on aquatic bottom dwelling organisms." J. Water Poll. Cont. Fed., 43(755).
- Carroll, D., 1959. "Ion exchange in clays and other minerals." Geol. Soc. Amer. Bull., 70(749).
- Chen, K.Y., 1974. Unpublished results.
- Chen, K.Y. and T.F. Yen, Sept. 1972. "Models for the fate of heavy metals in sediment." Preprint, Div. Water, Air, and Waste Chem., Amer. Chem. Soc., 164th Nat. Meeting, NY, p. 165.
- Chesters, G., and G.B. Lee. "Insecticide adsorption by lake sediments as a factor in controlling insecticide accumulation in lakes." Dept. of Soil Science, U. of Wisconsin.
- Committee on Nutrients in Water, 1970. "Chemistry of nitrogen and phosphorus in water." J. Am Water Works Assn., 62(127).

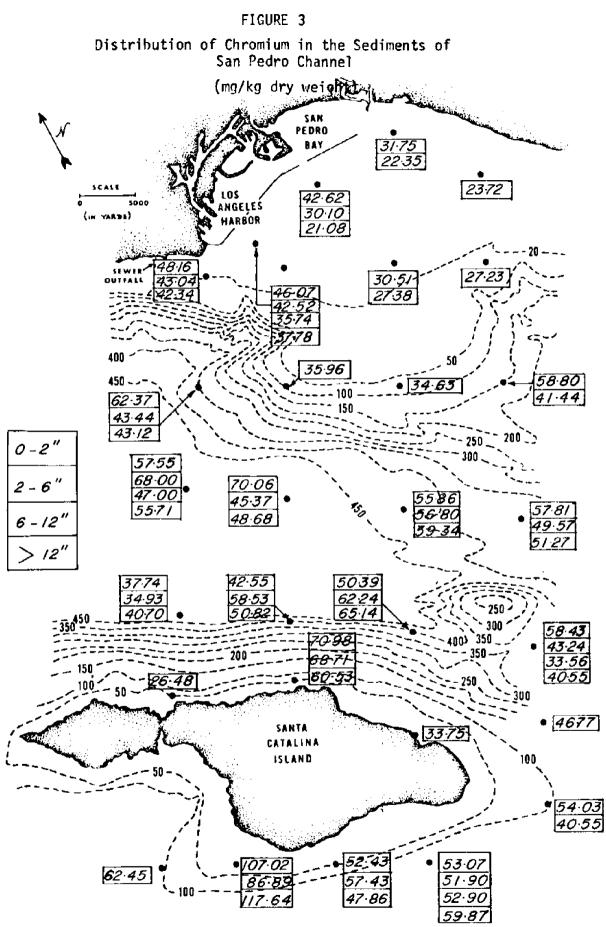
Council in Environmental Quality, April, 1971. "Toxic substances."

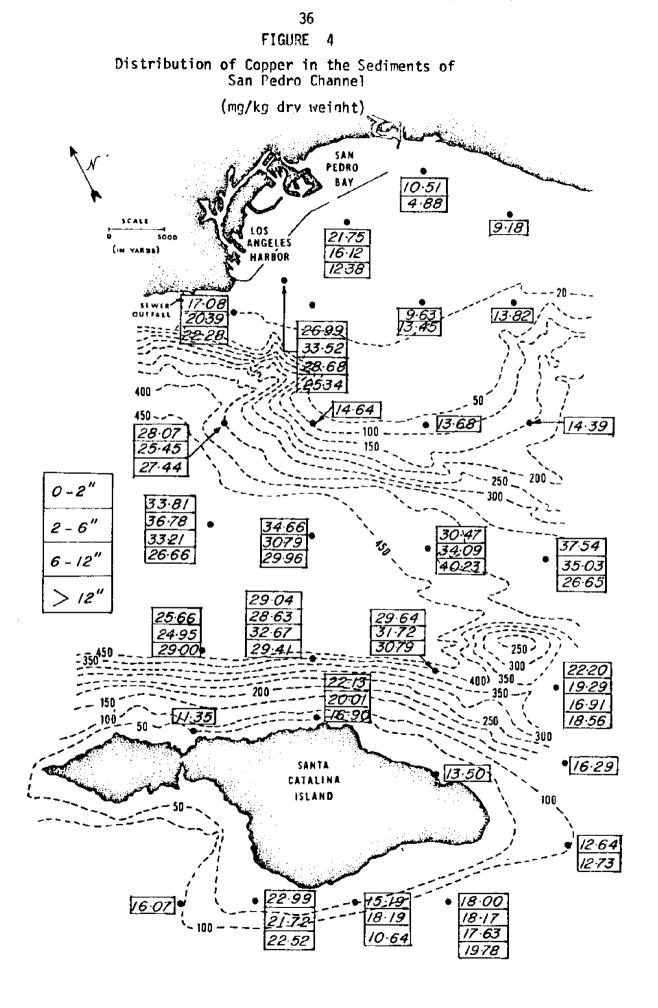
- Council on Environmental Quality, Oct. 1971. "Ocean dumping--a national policy."
- Cronin, L.E., G. Gunter, and S.H. Hoopkins, 1971. "Effects of engineering activities on coastal ecology." Report of Office, Chief of Engineers, U.S. Army.
- Duke, T.W., J.N. Willis, and D.A. Wolfe, 1968. "A technique for studying the exchange of trace elements between estuarine sediments and water." Limnol. Ocean., 13(541).
- Duke, T.W., et al., 1969. "Influence of environmental factors on the concentration of Zn-65 by an experimental community." Proc. 2nd Nat. Symp. Radio-eral., Ann Arbor, MI, p. 355.
- Duursma, E.K. and C.J. Bosch, 1970. "Theoretical, experimental, and field studies concerning the diffusion of radioisotopes in marine sediments." Neth. J. Sea Res., 4(395).
- Eichholtz, G.G., T.F. Craft, and A.N. Galli, 1967. "Trace element fractionation by suspended matter in water." Geochim Cosmochim. Acta, 31(737).
- Environmental Protection Agency (formerly Federal Water Pollution Control Administration) Dec. 1969. Great Lakes Regional Committee on Analytical Methods, "Chemistry Laboratory Manual on Bottom Sediments."
- Environmental Protection Agency, 1973. "Ocean dumping: Final regulation and criteria." Federal Register, 38(198): 28610-28621.
- Esernoglou, D. and E.H. Anthony, 1971. "Particle size, water stable aggregates and bacterial populations in lake sediments." Can. J. Microbiol., 17(217)
- Fagerstrom, T. and A. Zerneloz, 1971. "Formation of methylmercury from pure mercuric sulfide in aerobic organic sediment." Water Research (Pergamon Press), 5(121).
- Flotard, R.D. and G.D. Veith, Sept. 1972. "Composition changes of chlorobiphenyl mixtures in anerobic lake sediments." Preprints, Water, Air, and Waste Chem. Div. Amer. Chem. Soc. 164th Nat. Meeting, NY, p. 60.
- Galloway, J.N., 1972. "Man's alteration of the natural geochemical cycle of selected trace metals." Ph.D. Dissertation, U. of California, San Diego.
- Goerlitz, B.F. and L.M. Law, 1971. "Removal of sulfur interference from sediment extracts for pesticide analysis." Bull Environ. Contam. Toxicol., 6(1).

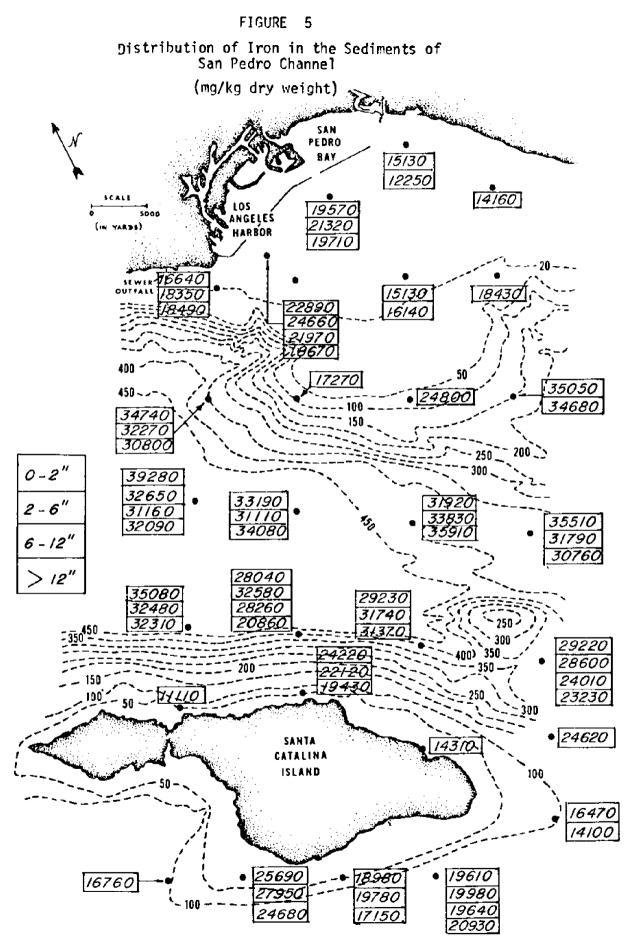
- Graetz, D.A., G. Chesters, T.C. Daniel, L.W. Newland, and G.B. Lee, 1970. "Paration degradation in lake sediments." J. Water Poll. Control Fed., 42(R 76).
- Greve, P.A. and H.G. Verschuuren, 1971. "Toxicity of endosulfan for fish in surface waters." Schriftenr. Ver. Asser. Boden, and Lufthyg, Berlin-Dahlem, 34(63).
- Grissinger, E.H. and L.L. McDowell, 1970. "Sediment in relation to water quality." Water Resources Bull., 6(7).
- Gross, M.G. et al., April, 1971. "Survey of marine waste deposits, New York metropolitan region." Stoney Brook Marine Science Res. Center, SUNY.
- Hannerz, I., 1968. "Accumulation, retention, and elimination of Zn-65 in freshwater organisms studied in pond experiments." Proc. 1st Intl. Cong. Rad. Prot., Rome, Italy, p. 417.
- Hauser, M.E. and M. Fauth, June 1972. "Potomac River sediment study." Naval Ordinance Station, Indiana Head, MD.
- Hendricks, T.J. and D.R. Young, Jan., 1974. "Modelling the fates of metals in ocean-discharged wastewaters." So. Calif. Coastal Waters Res. Project.
- Holt, R.F., 1969. "Run-off and sediment and nutrient sources." Water Res. R. Center Bull., 13(35).
- Holt, R.F. et al., 1970. "Chemistry of sediment in water," in "Agricultural practices and water quality." Iowa State U. Press, Ames, Iowa.
- Horowitz, A., 1970. "The distribution of Pb, Ag, Sn, Te, and Zn in sediments on active oceanic ridges." Marine Geol., 9(241).
- Jensen, S. and A. Zernelov, 1969. "Biological methylation of mercury in aquatic organisms." Nature, 233(753).
- Jones, A.S.G., 1972. "Partial geochemical study of shallow marine sediments."Mar. Geol., 12(313).
- Kalinenko, V.V. and E.N. Nevesskii, 1971. "Fe, Mn, Ti, and other elements in shallow water sediments of the White Sea." Geomorphol. Litol., Beregovoi Zony Morei Drugikh Krupnikh Vodoemov, 10(123).
- Keeley, J.W. and R.M. Engler, March 1974. "Discussion of regulatory criteria for ocean disposal of dredged materials: elutriate test rationale and implementation guidelines." Misc. Paper D-74-14, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

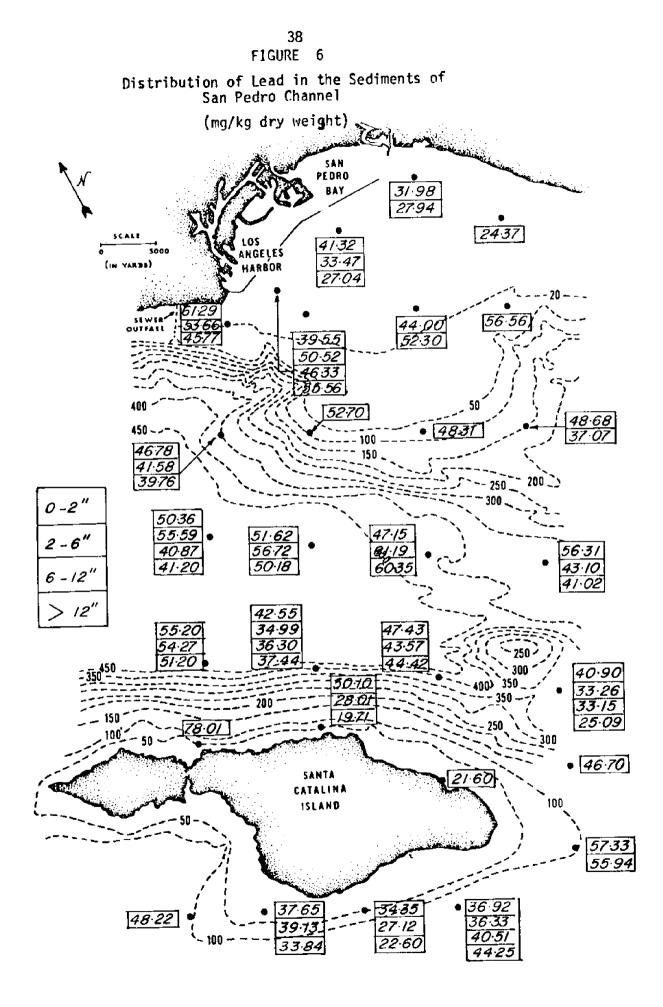

- Kinimel, B.L. and O.T. Long, 1970. "Factors influencing orthophosphate concentration decline in the water of laboratory mud-water systems." Texas Journal of Science, 21(439).
- Koshi, E., M.V.M. Desai, and A.K. Ganguly, 1969. "Interactions of metallic ions with humic acids from a marine sediment." Curr. Sci., 38(582).
- Kudo, A. and E.F. Gloyna, 1971. "Transport of 137-Cs interaction with bed sediments." Water Research, 5(71).
- Landstrom, O., et al., 1967. "On investigation of trace elements in marine and lacustrine deposts by means of a neutron activation method." A.B. Atomenegri, Stockholm, AE-296.
- Lee, G.F., 1970. "Factors affecting the transfer of materials between water and sediments." Water Research Center, U. of Wisconsin, Madison.
- Lee, G.F., and R.H. Plumb, 1974. "Literature review on research study for the development of dredged materials disposal criteria." Contract Report, U.S. Army Waterways Exp. Sta., Vicksburg, MS.
- Leshinowsky, W.D., Dugan, P.R., Pfister, R.M., Frea, J.I., and Randles, C.I., 1970. "Adsorption of chlorinated hydrocarbon pesticides by microbial flora and lake sediment and its ecological implications." Proc. 13th Conf. Intl. Assn. of Great Lakes Res., p. 611.
- Lobchenko, E.E. and V.T. Kaplin, 1968. "Role of suspended matter in the self-purification of natural waters by the removal of copper and zinc ions." Gidrikhim, Mater., 48(151).
- Lyons, E.T. and H.A. Soman, April 1972. "Development of analytical procedures for determining chlorinated hydrocarbons in waters and sediments from storage reservoirs." Engr. and Res. Center, Bur. of Reclamation, Denver, CO.
- Manheim, F.T., 1970. "The diffusion of ions in unconsolidated sediments." Earth and Planet. Sci. Letters, 9(307).
- McKee, G.D., L.P. Parish, C.R. Hirth, K.M. MacKenthun, and L.E. Keup, 1970. "Sediment-water nutrient relationships." Water and Sewage Works, 117(203).
- Meyers, N.L., et al., 1969, pub. 1970. "Adsorption of insecticides on pond sediments and watershed soils." Proc. Indiana Acad. Sci., 79(432).
- Monais, A., 1970. "Ion-exchange phenomena in clay suspensions in sea water." C.R. Acad. Sci. Ser. D., 270(1743).

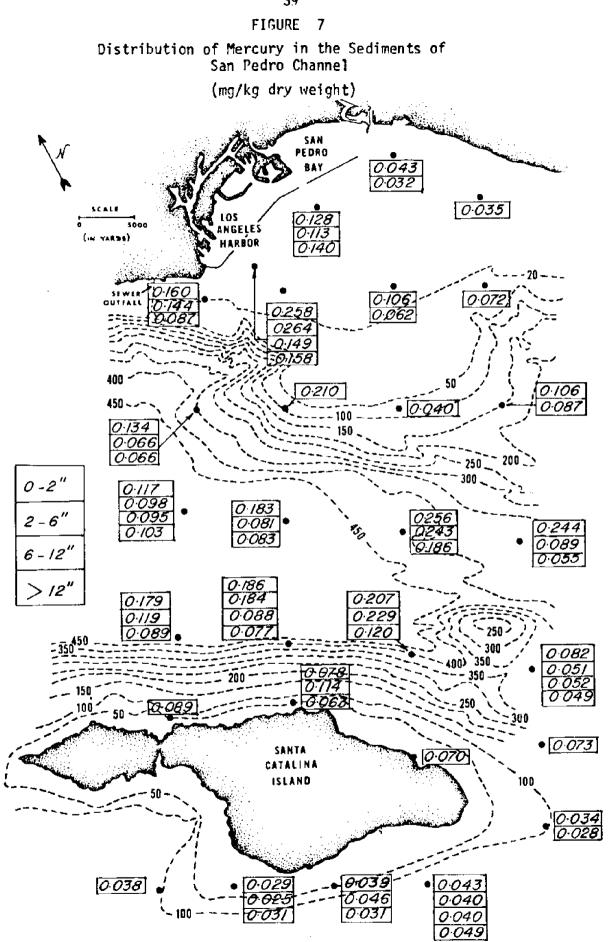

- Mortimer, C.H., 1971. "Chemical exchanges between sediments and water in the Great Lakes--speculations on probable regulatory mechanisms." Limnol. Ocean., 16(387).
- Mun, A.I. et al., 1967. "The behavior of rare alkali elements in recent deposits." Litol. Polez. Iskop, 117 (2).
- Newland, L.W., 1969. "Adsorption and degradation of insecticides by lake sediments." Ph.D. Dissertation, U. of Wisc., Univ. Microfilms No. 69-9710.
- Nimmo,D.R.,et al.,Sept. 1972. "Toxicity and physiological activity of arochlor 1254 to several estuarine organisms." Preprints, Water, Air, and Waste Chem. Div., Amer. Chem. Soc. 164th Nat. Meeting, NY, p. 155.
- Official method of analysis of the association of analytical chemists, 1970, 11th Ed., p. 475-511.
- O'Neal, G. and J. Sceva, July, 1971. "The effects of dredging on water quality in the Northwest." Environmental Protection Agency, Office of Water Programs, Region X, Seattle, WA.
- Pamatmat, M.M. and D. Fenton, 1968. "An instrument for measuring subtidal benthic metabolism in situ." Limnol. and Ocean., 13(537).
- Pasternak, K., 1969. "The properties of sediments of the impounding reservoir at Porabka." Acta Hydrobiol., 11(361).
- Patterson, C., Feb. 8, 1974. "Lead in seawater." Science, 183: 553-554.
- Phelps, D.K., et al., 1969. "Trace element composition of inshore and offshore benthic popluations." Proc. 2nd Nat. Symp. Radioeral., Ann Arbor, MI, p. 509.
- Presley, B.J. et al., 1967. "Manganese and related elements in the interstitial water of marine sediments." Science, 158(906).
- Pueys, G., 1967. "Contribution of the chemistry of living beings to geochemistry." Rv. Gen. Sci., Pure Appl. Bull. Assoc. Fr. Avan. Sci., 74(197).
- Rashid, M.A., 1969. Maritime Sediments, 5(46).
- Rashid, A.N., 1969. "Contribution of humic substances to the cation exchange capacity of different marine sediments." Mar. Sediments, 5(44).

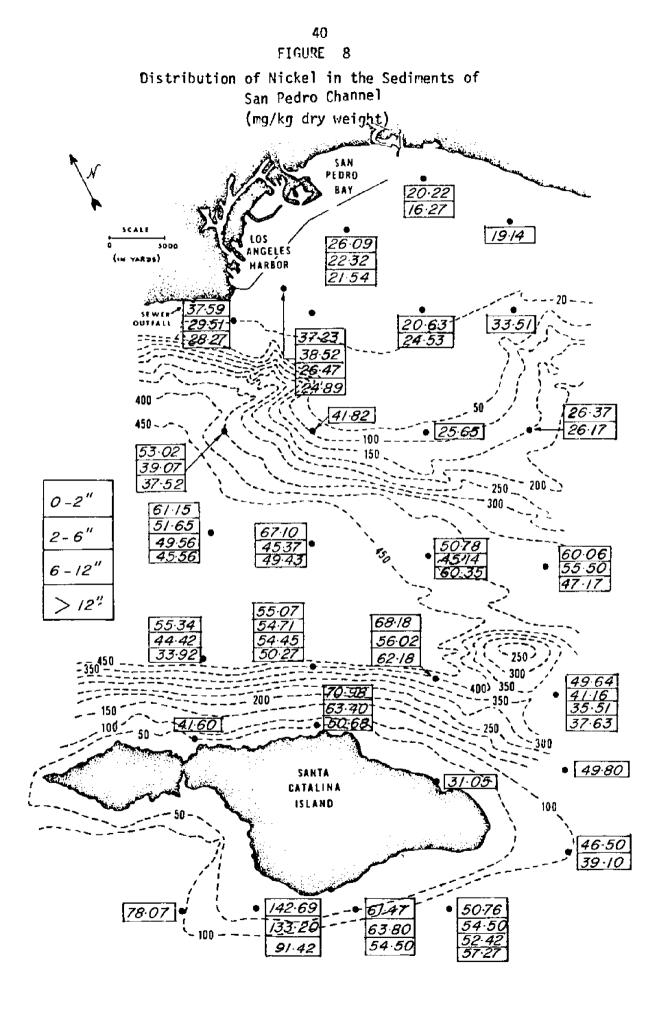

- Reynolds, L.M., 1969. "Polychlorobiphenyls (PCB's) and their interferences with pesticide residue analysis." Bull. Environ. and Toxicol., 4(3):128-143.
- Richard, H.L. and Kirk-Othmer, 1964. Encyclopedia of chemical technology, 2nd. Ed., Vol. 5:289-297.
- Rowe, D.R., L.W. Carter and J.W. Mason, 1970. "Contamination of oysters by pesticides." A.S.C.E.J.,96(SA5):1221-1234.
- Sanger, J.E. and E. Gorham, 1971. "The diversity of pigments in lake sediments and its ecological significance." Limnol. and Ocean., 15(59).
- Schafer, C.T., 1968. "Distribution, pollution response, temporal variation of Foraminifera and sedimentation in Western Long Island Sound." M.S. Thesis, N.Y.U.
- Schindler, J.E., et al., 1971. "Organic-inorganic associations: their formation and involvement in nutrient mobilization from the sediments of lakes." Dept. of Geology, U. of Georgia, Athens, Research Report OWRR A-029-GA(3).
- Schindler, J.E. and K.R. Honick, 1971. "Oxidation-reduction determinations at the mud-water interface." Dept. of Geology, U. of Georgia, Athens, Research Report OWRR A-029-CA.
- Schutzman, R.L., D.W. Woodham and C.W. Collier, 1971. "Sulfur removal for G.L.C. of pesticides." J.A.O.A.C., 54(5):1117-1119.
- Serruya, C., 1968-69. "Problems of sediments in the Lake of Geneva." Vehr. Intl. Ver. Limnol., 17(209).
- Shaheen, E.I. and W. Chantarasorn, 1971. "Transport of shoal deposits." J. Water Poll. Control Fed., 43(872).
- Shapiro, J., 1970. "A statement on phosphorus." J. Water Poll Control Fed., 42(772).
- Sharma, G.D., 1970. "Sediment-sea water interaction in glacio-marine sediments of southeast Alaska." Geol. Soc. Amer. Bull., 81(1097).
- Shukla, S.S., J.K.Syers, J.D.H. Williams, D.E. Armstrong, and R.F. Harris, 1971. "Sorption of inorganic phosphate by lake sediments." Soil Science Soc. Amer. Proc., 35(244).
- Sieburth, J.M., June 1971. "Binding and precipitation of trace elements by humic substances in natural waters." Graduate School of Oceanography, Rhode Island University.

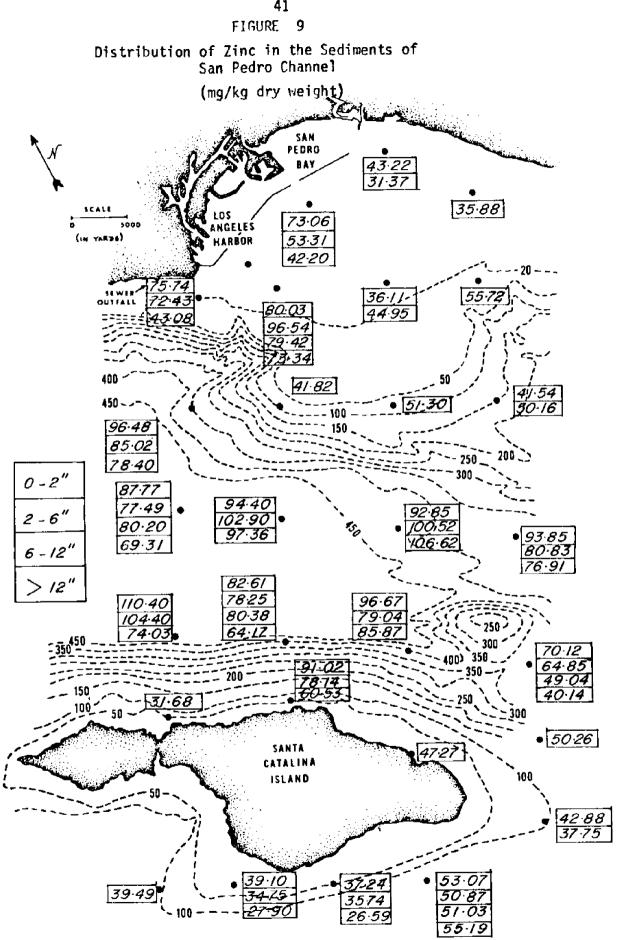

Snyder and Reinert, 1971. Bull Environ. Contam. Toxicol., 6(5): 385-390.

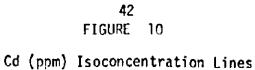

- Southern California Coastal Water Research Project, Oct. 1971. "Mercury in the environment--a summary of information pertinent to the distribution of mercury in the Southern California bight."
- SCCWRP, 1973. "The ecology of Southern California bight." Implications for water quality management."
- Suggs, J.D., et al., March 1972. "Mercury pollution control in streams and lake sediments." Adv. Technology Conference, Dallas, TX.
- Svante, O. and Berggren, B., 1970. "Chlorinated hydrocarbons in soils and sediments." Grund Forebattring, 23(5): 85.
- Tasler, J.D. and T.O. Munson, Sept. 1972. "Movement of PCB's through the Chester River Estuary." Preprints, Water, Air, and Waste Chem. Div., Am.Chem. Soc. 164th Nat. Meeting, NY, p. 59.
- U.S. Dept. of Agriculture, 1963. "Proceedings of the Federal Interagency Sedimentation Conference." Jackson, MS, Misc. Publn. No. 970, Govt. Printing Office, Washington, D.C.
- Varentsov, I.M., 1970. "Leaching of manganese during reaction of basic volcanic rocks with sea water." Geol. Rud. Mestorozhd, 12(93).
- Veth, G.D. and G.F. Lee, 1971. "Water chemistry of toxaphene role of lake sediments." Env. Science and Technology, 5(230).
- Wagner, G., 1968. "Relation between the density of Tubificid colonies and the available nutrient in the sediment." Natl. Rev. Cesamten. Hydrobiol., 53(715).
- Windom, H.L., 1972. "Environmental aspects of dredging in estuaries." J. Am. Soc. Civil Eng., 98, No. WW4: 475-487.
- Yates, M.L., et al., "Distribution of polychlorinated biphenyls in the aquatic environment." Preprints, Water, Air, and Waste Chem. Div., Am. Chem. Soc. 164th Nat. Meeting, NY, p. 60.
- Yen, T.F. and S.R. Sprang, 1972. Geochim, Cosmochim. Acta, 36.
- Yu, I., and Lubchenko, 1970. "Lead in recent Black Sea sediments." Dokl., Akad, Nauk SSSR, 193(2): 445.

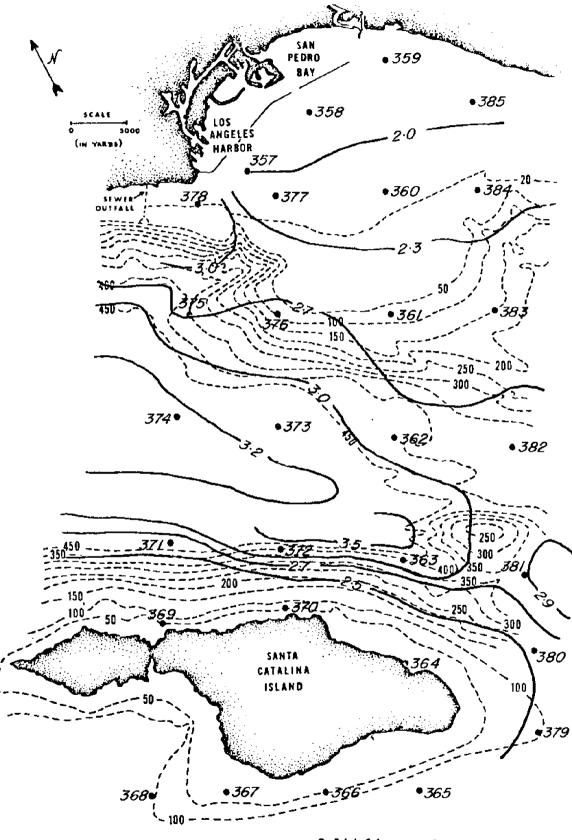












- 39

Solid lines: Concentration Broken lines: Contour

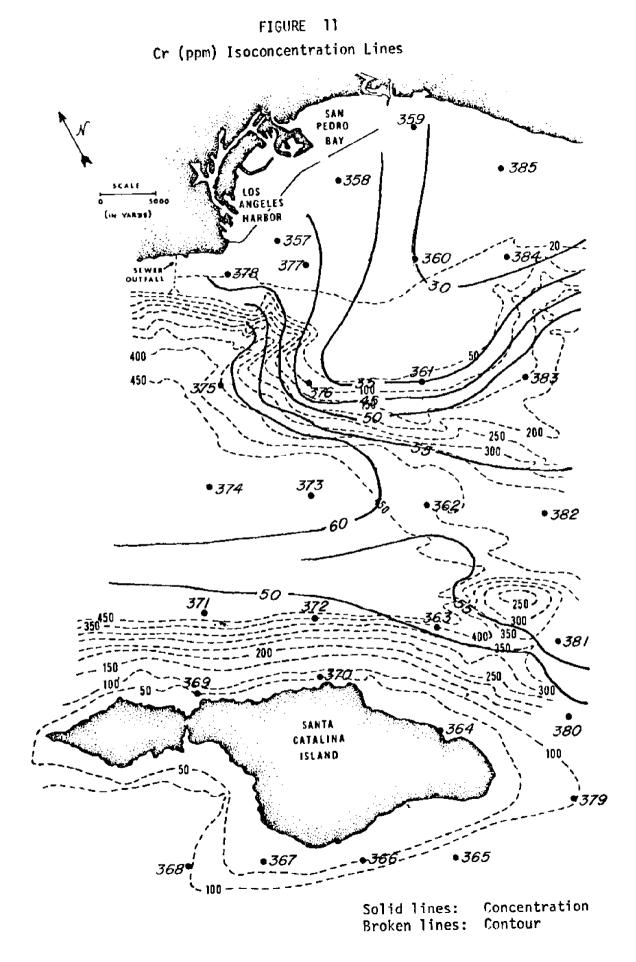
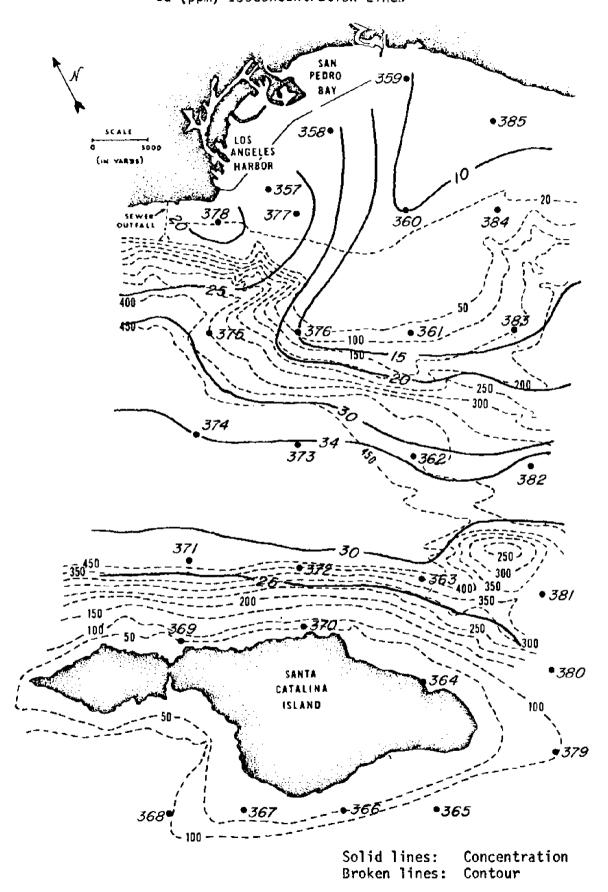
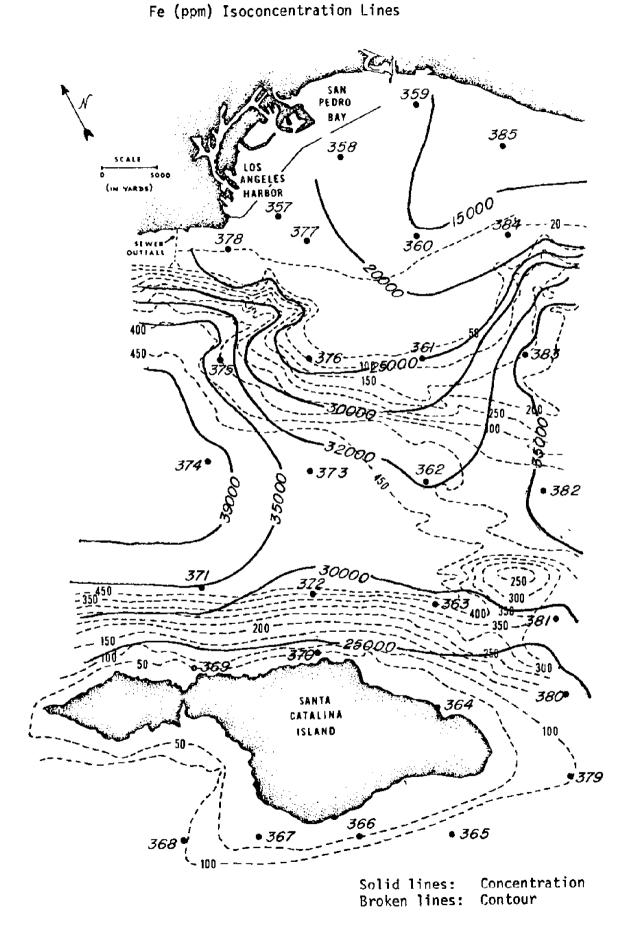
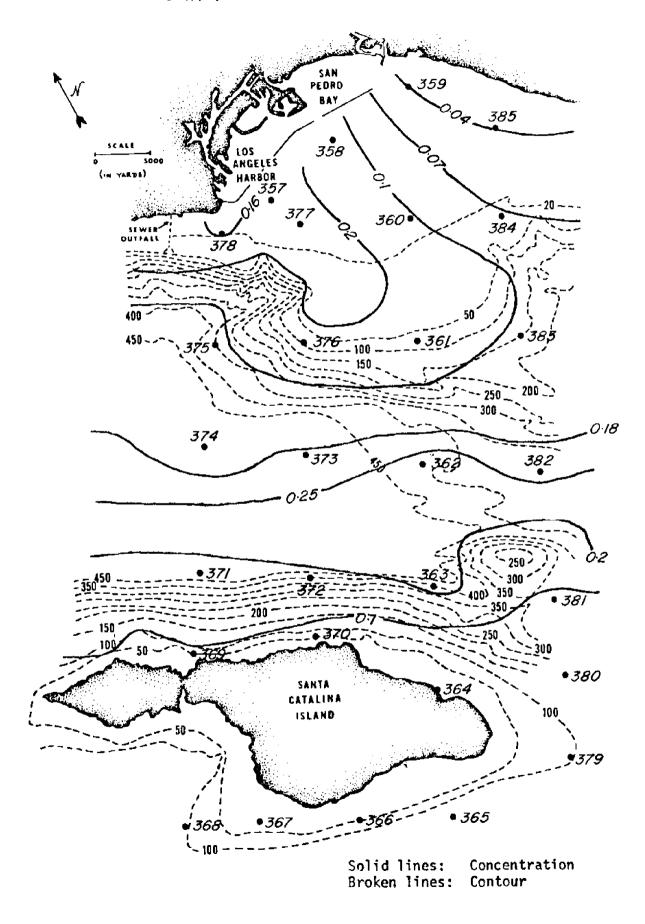
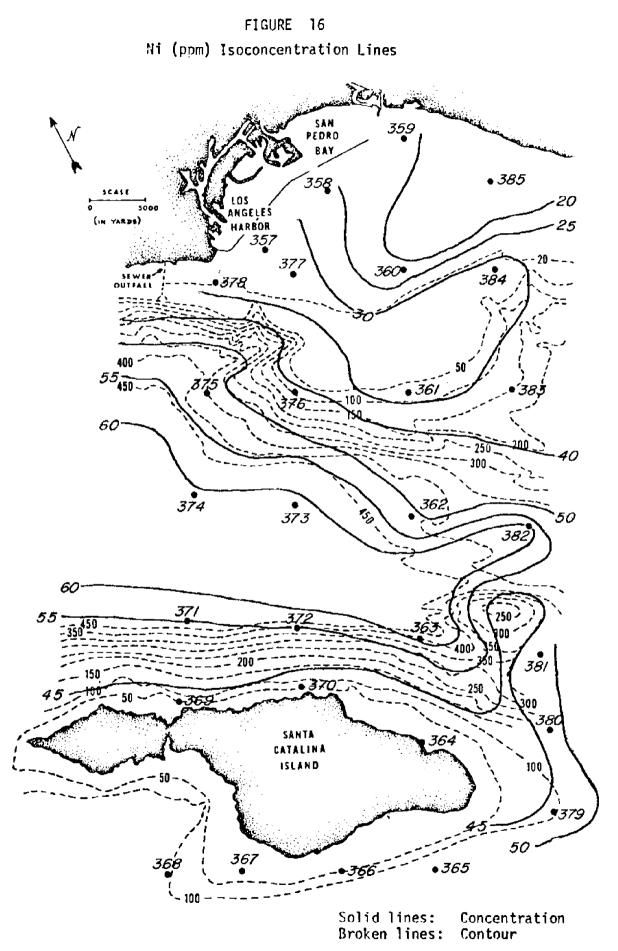
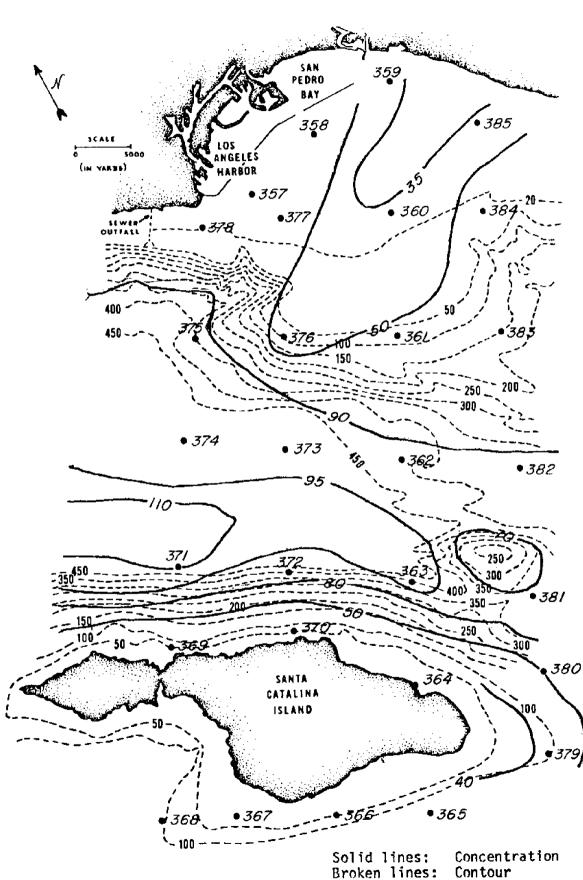


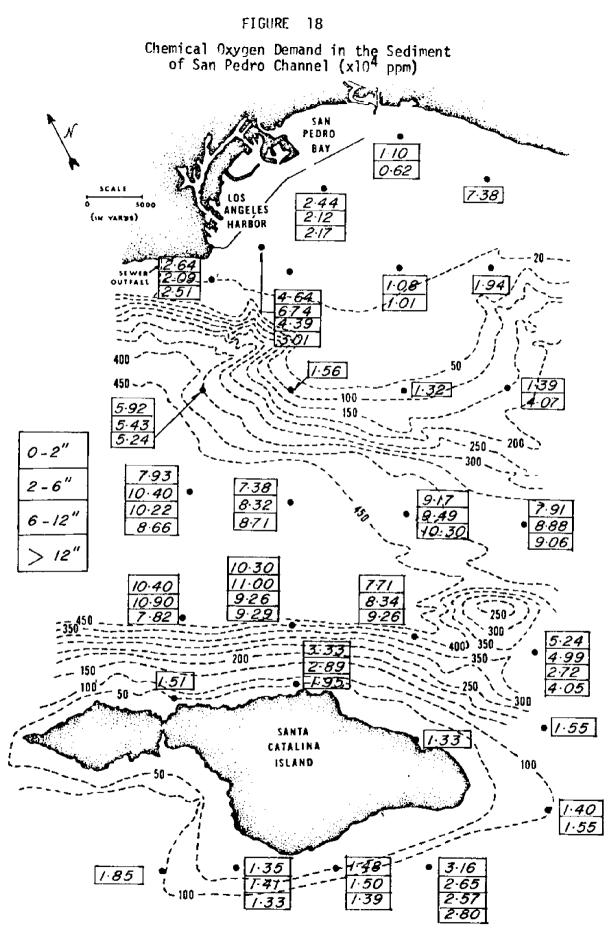
FIGURE 12 Cu (ppm) Isoconcentration Lines

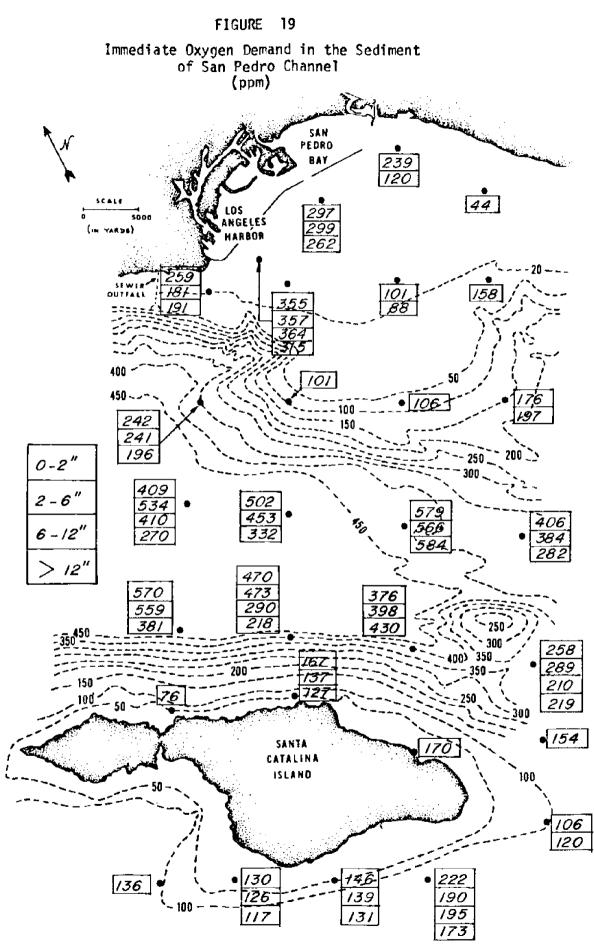




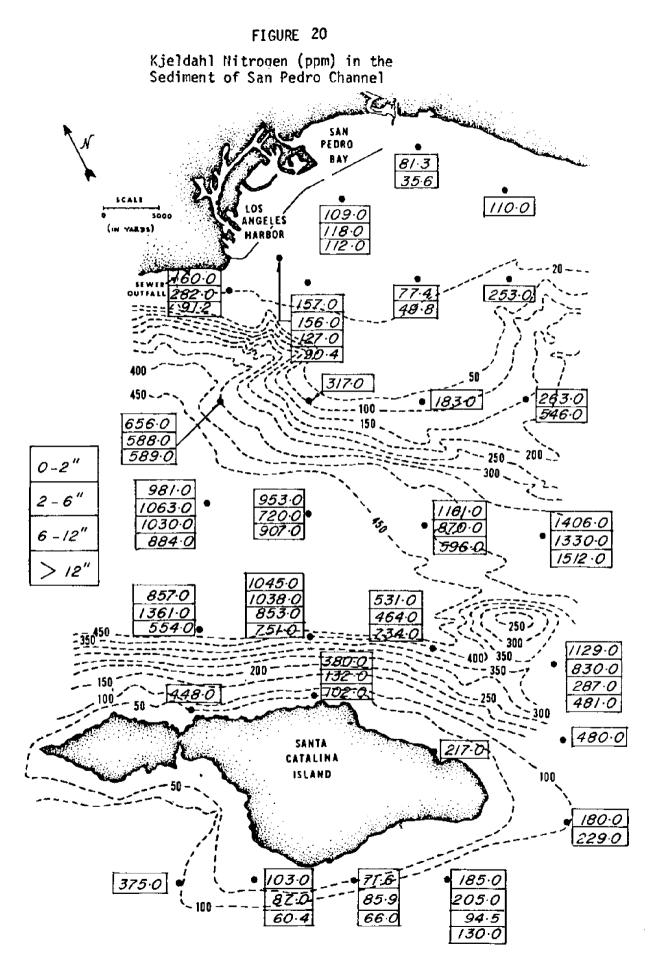

FIGURE 13

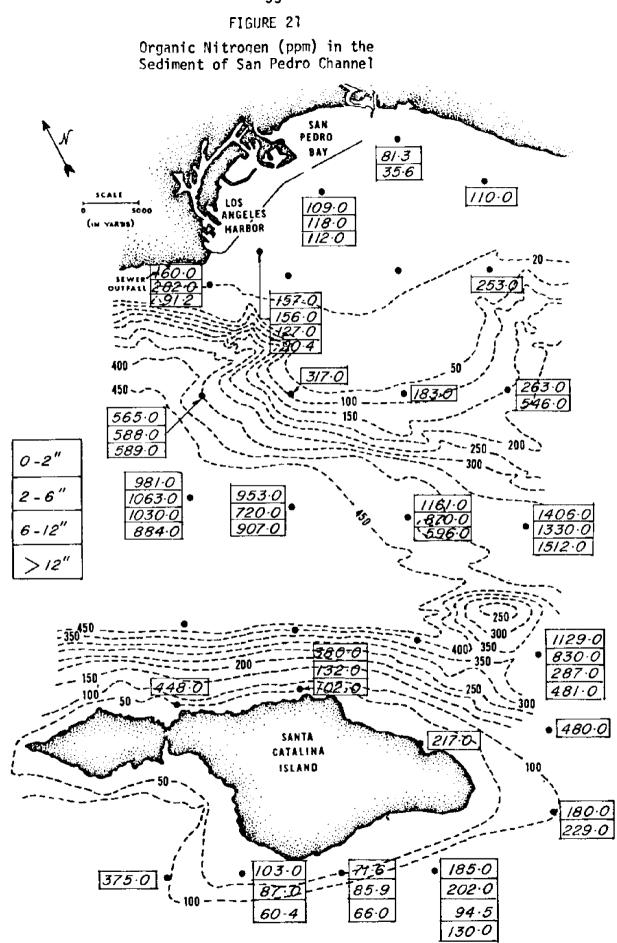


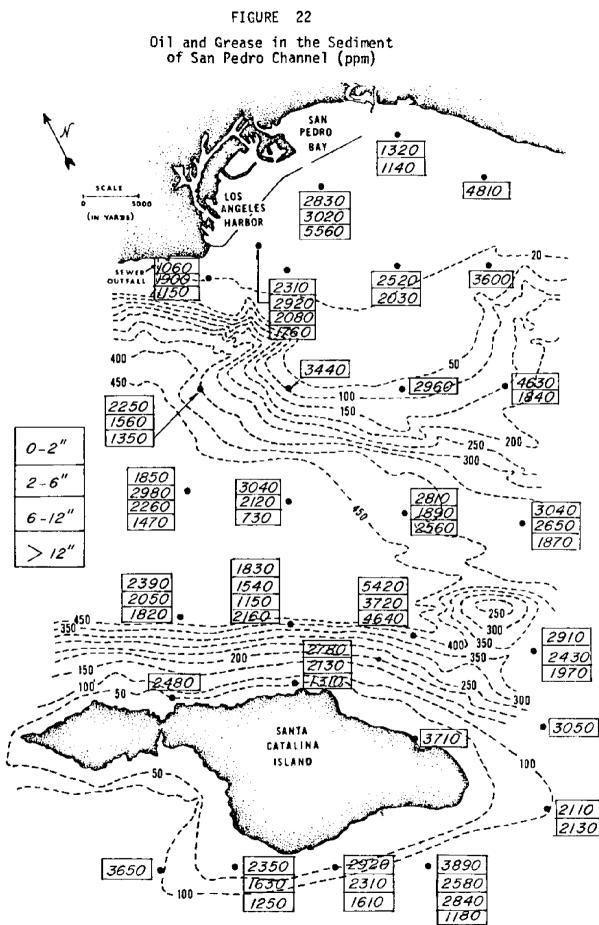
47 FIGURE 15 Hg (ppm) Isoconcentration Lines

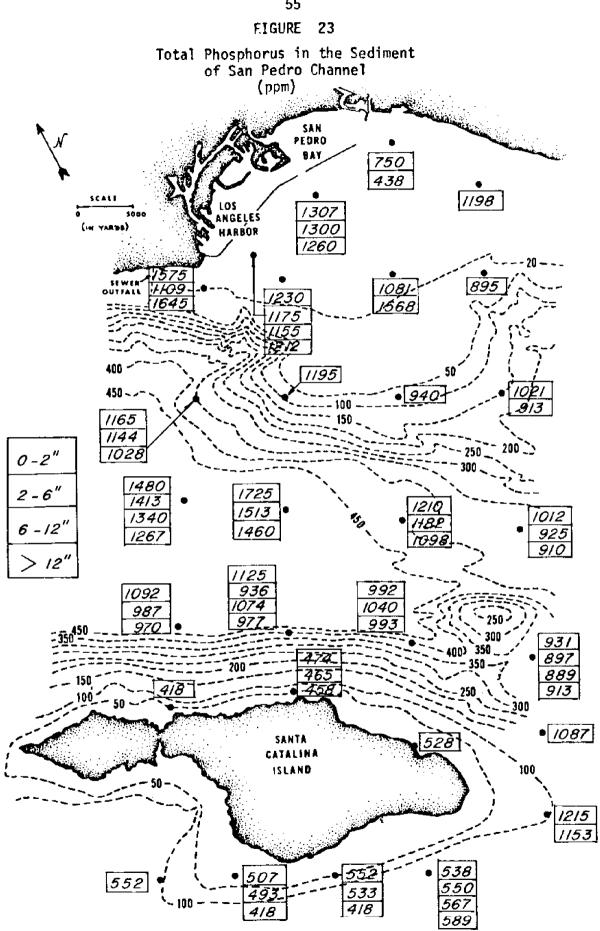


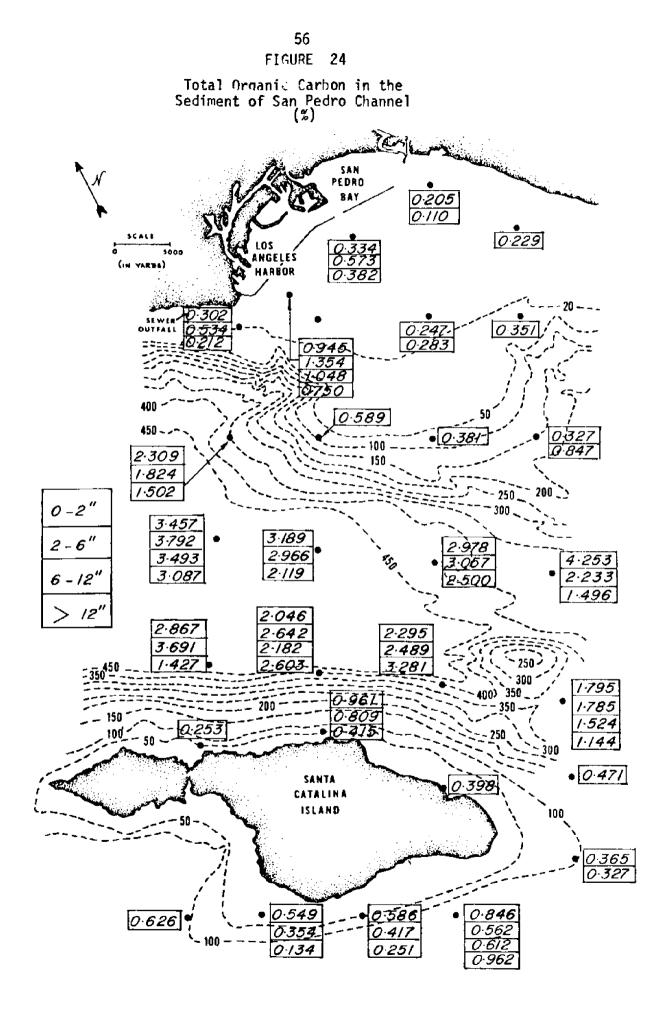


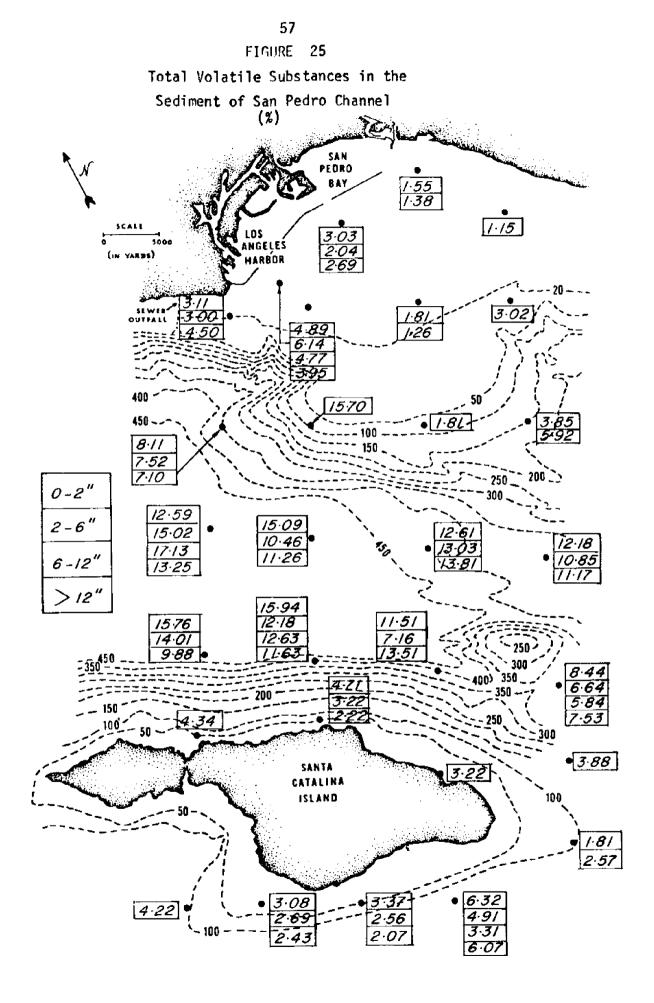

Zn (ppm) Isoconcentration Lines

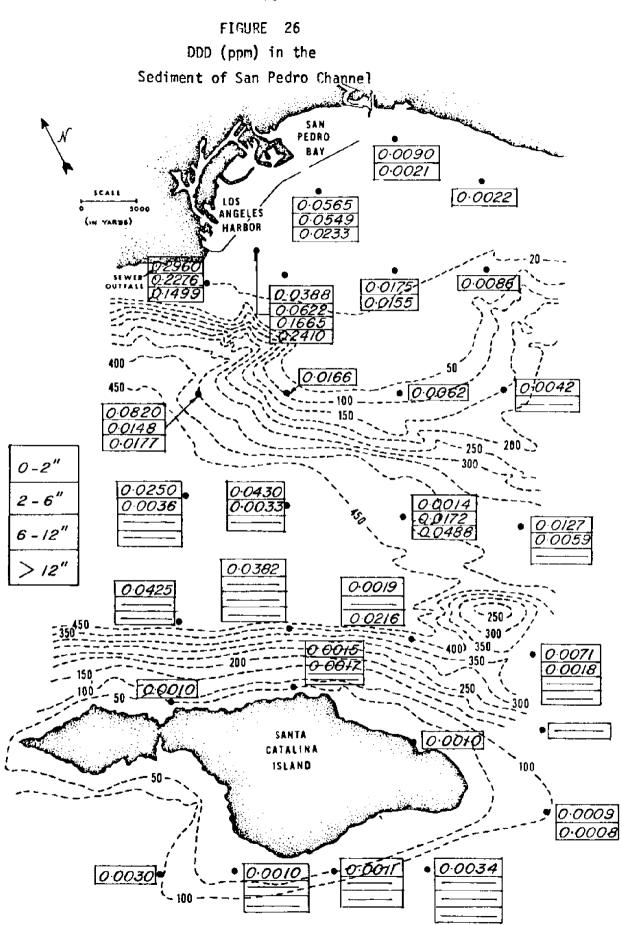

49

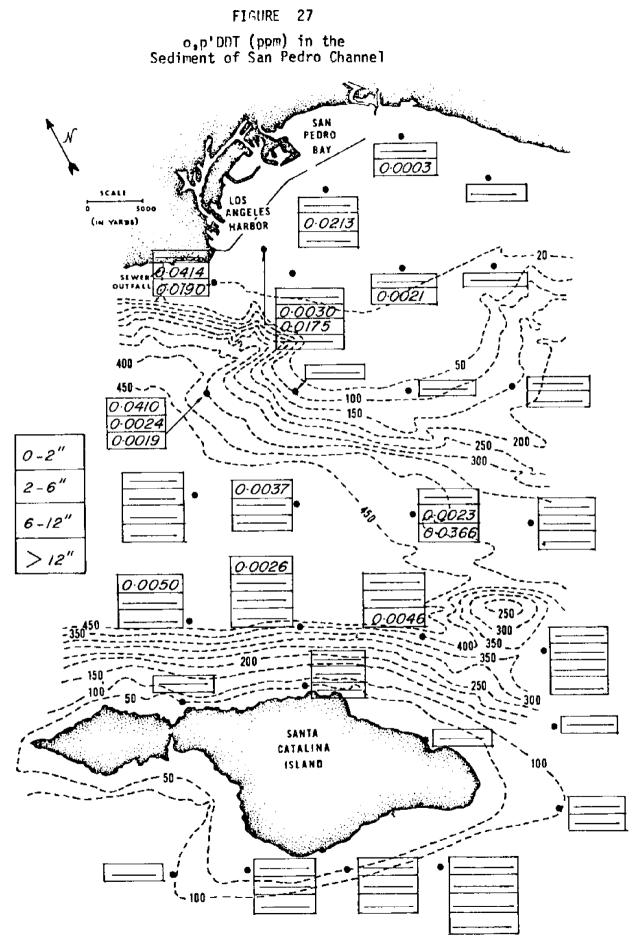

FIGURE 17

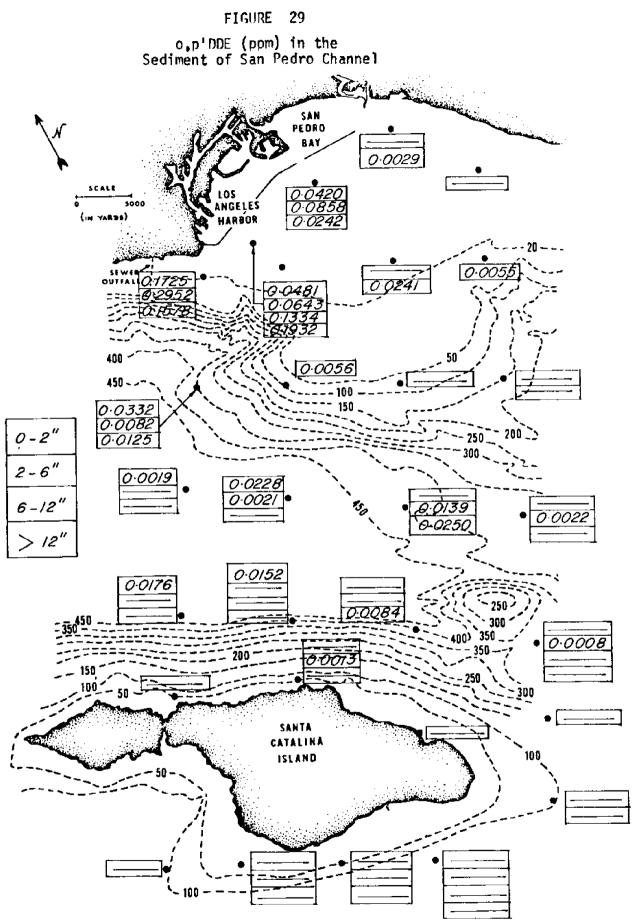


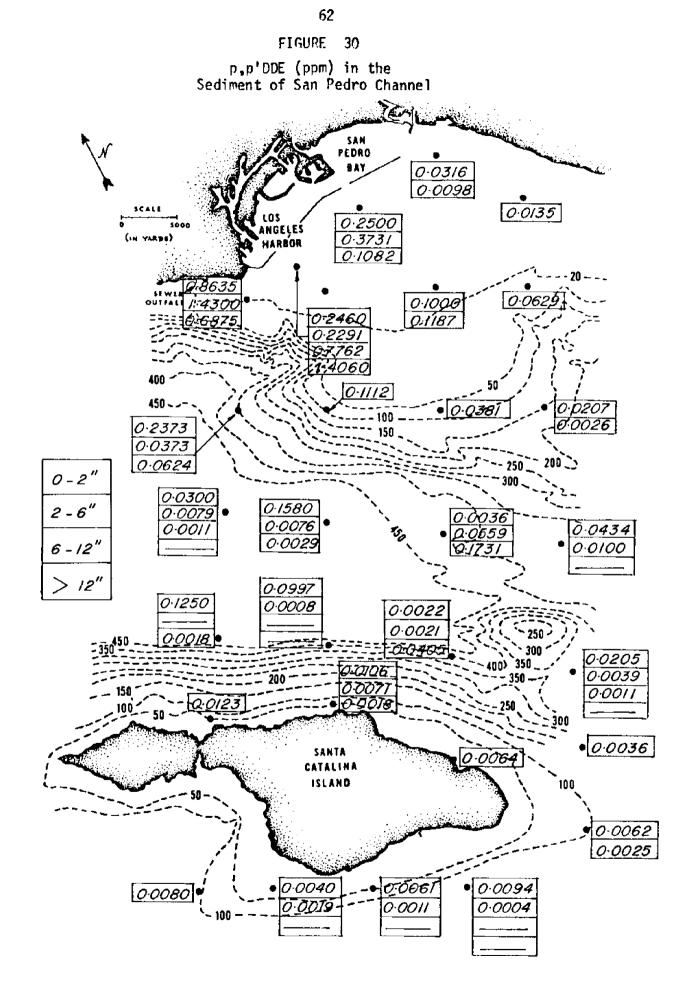


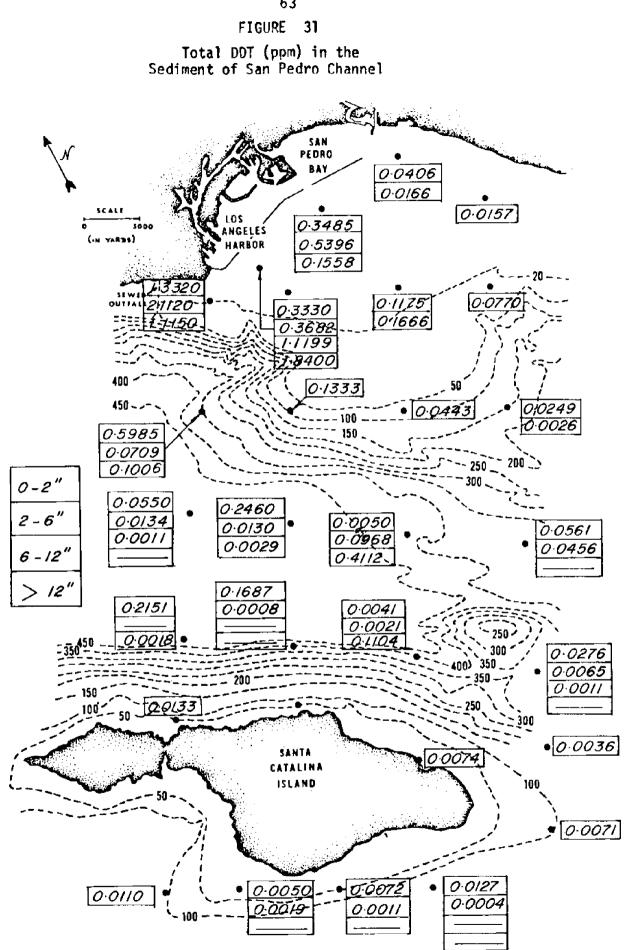


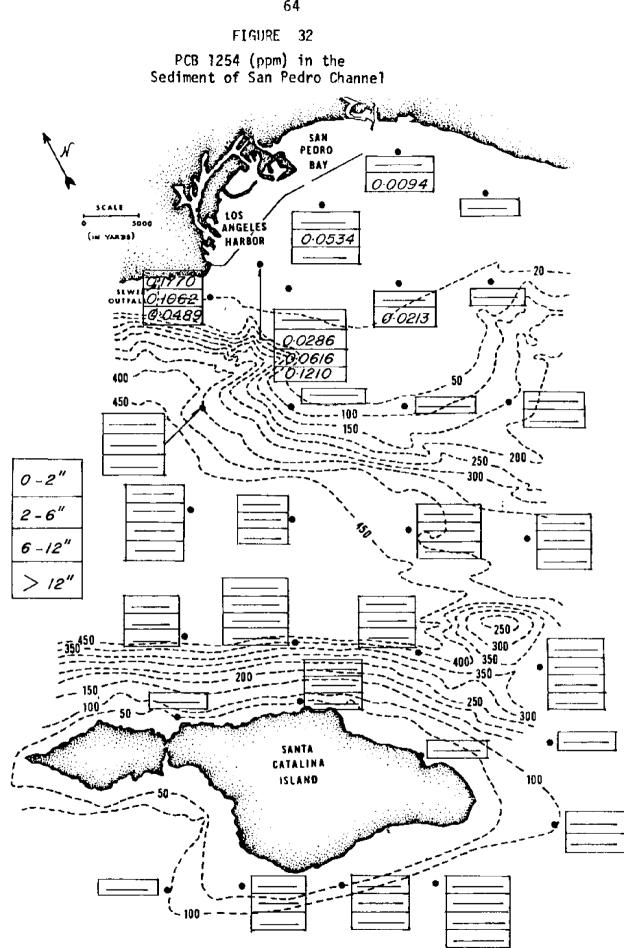


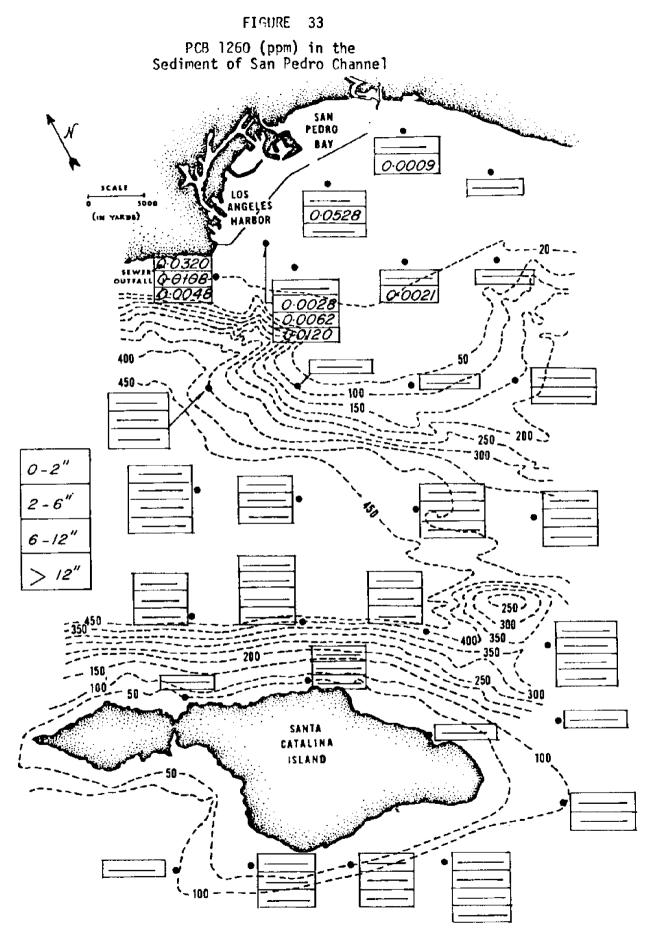


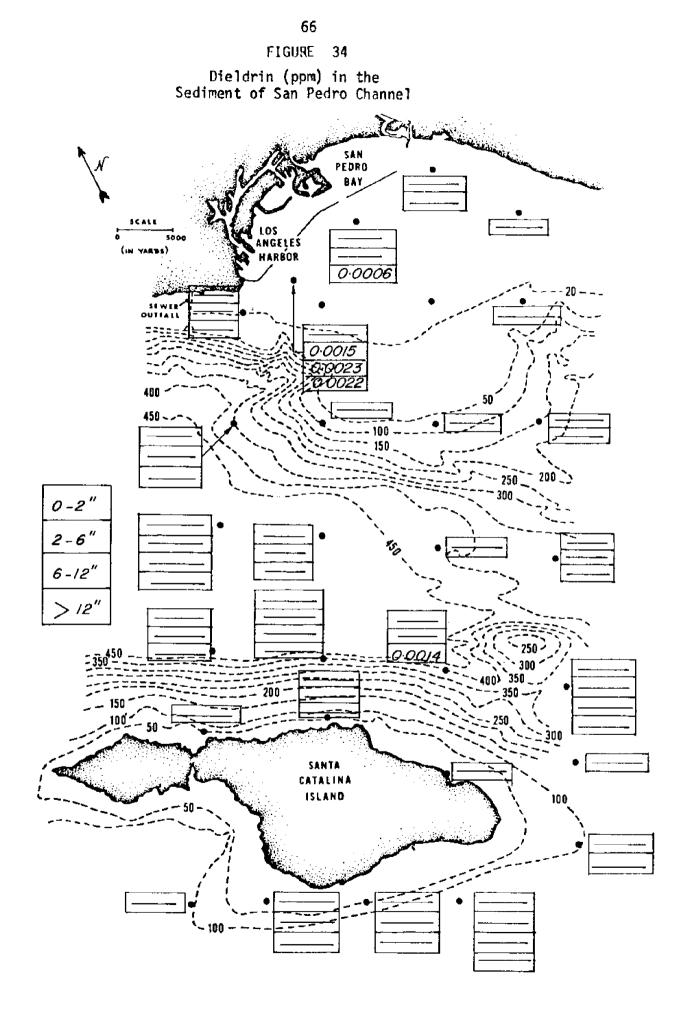


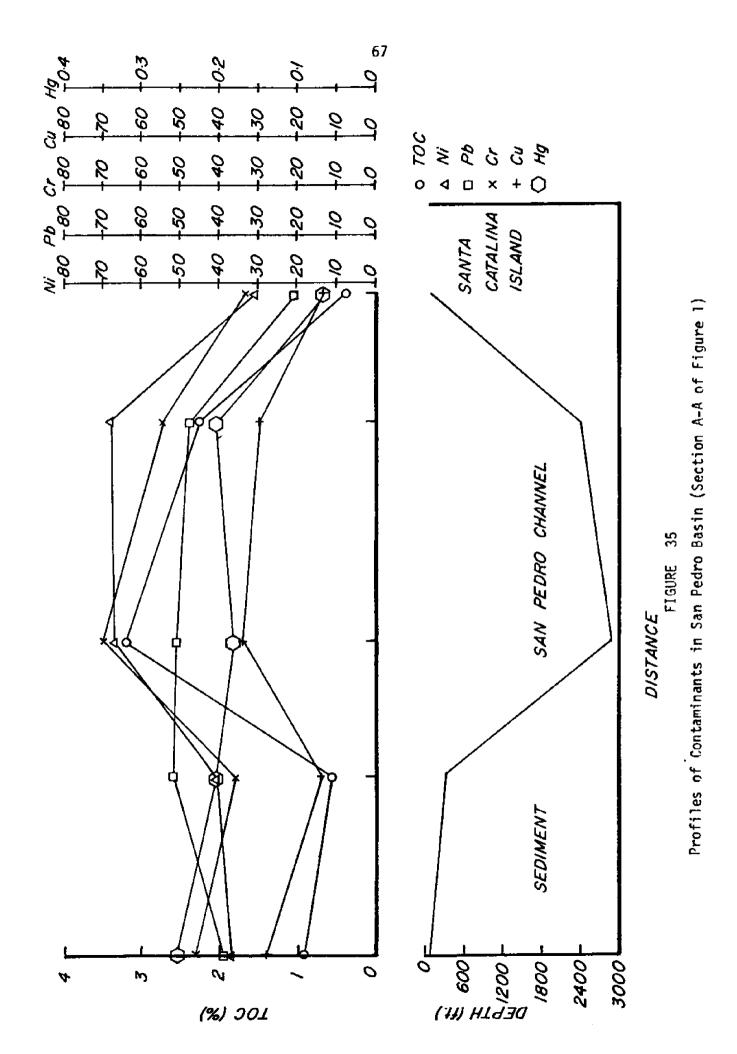


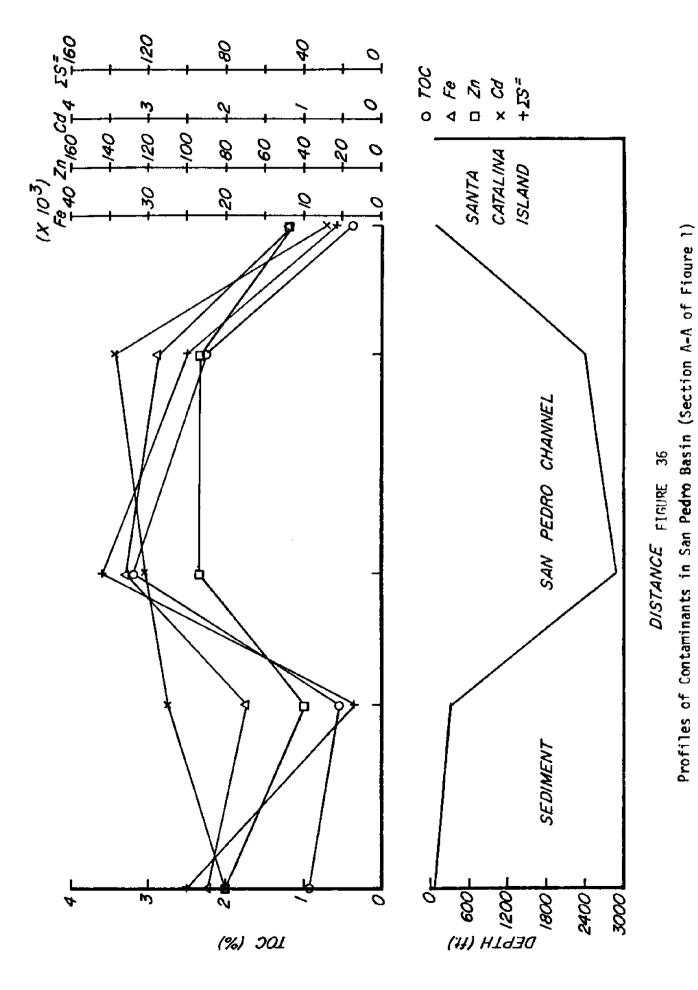


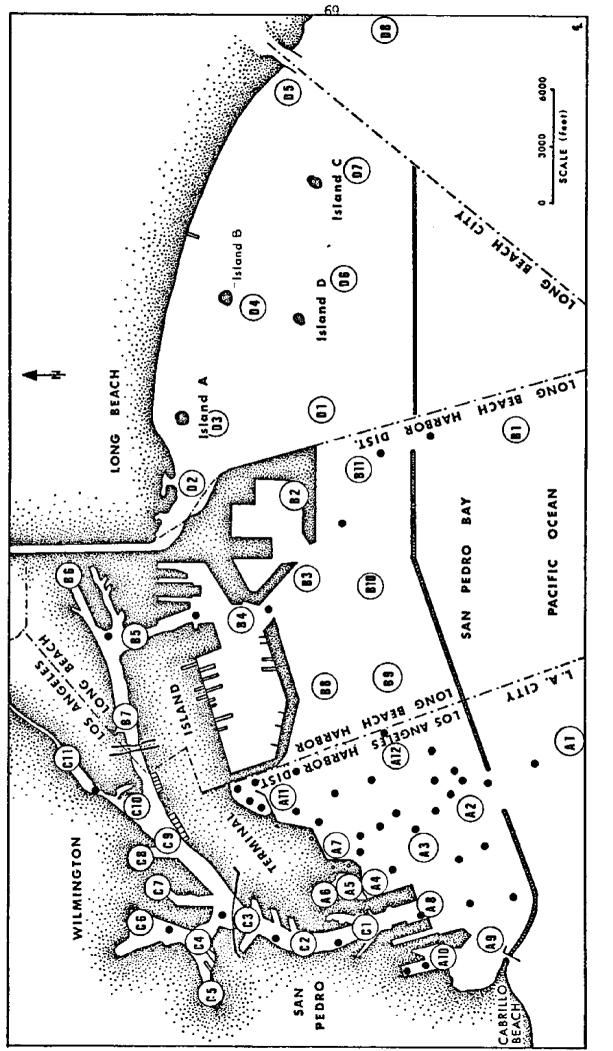


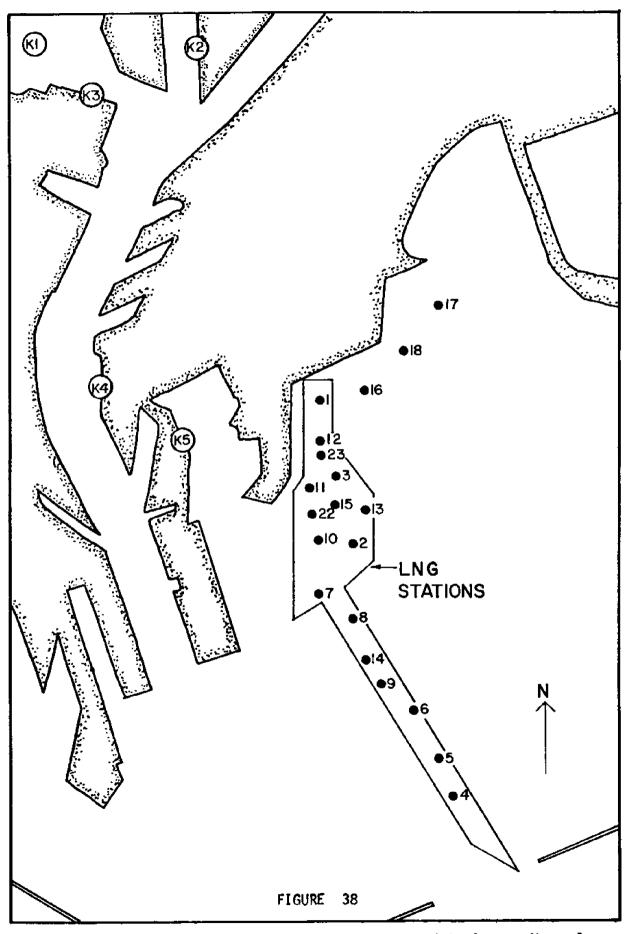


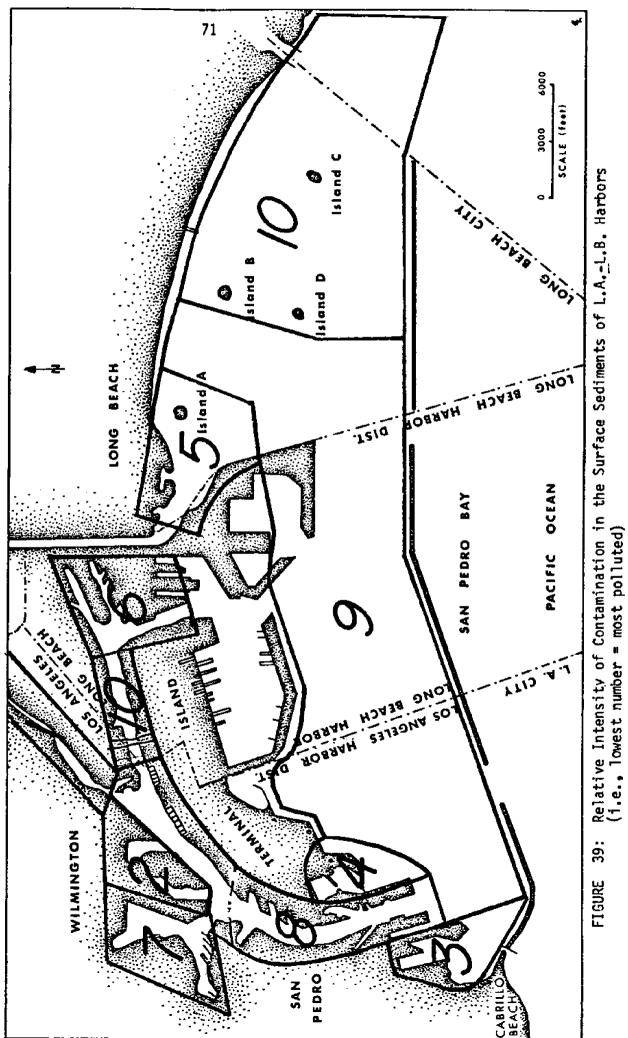












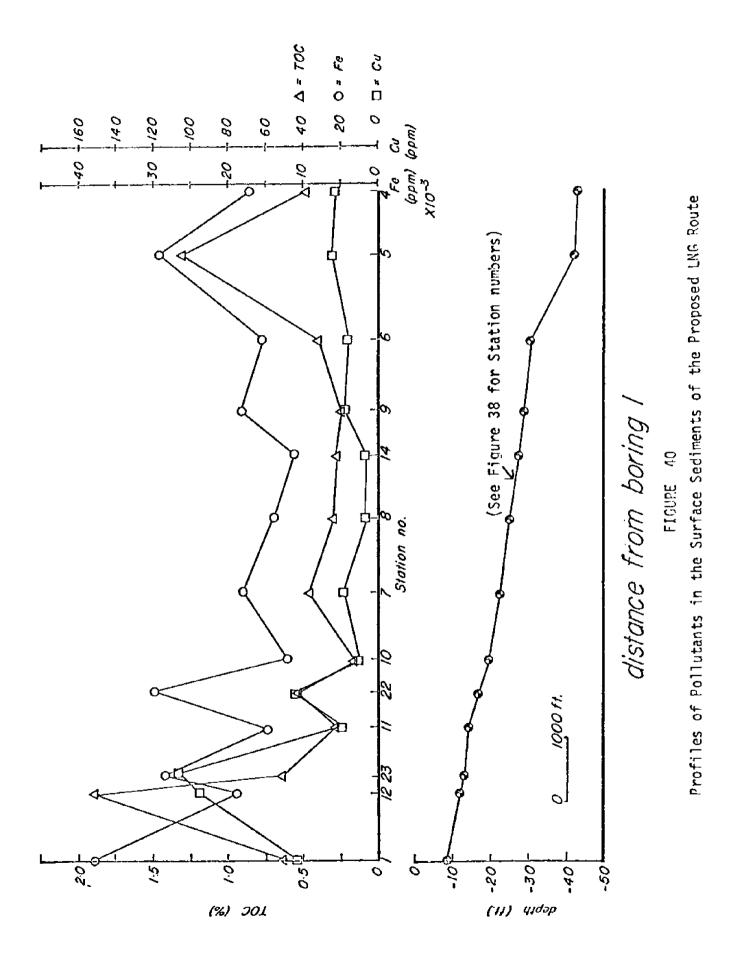
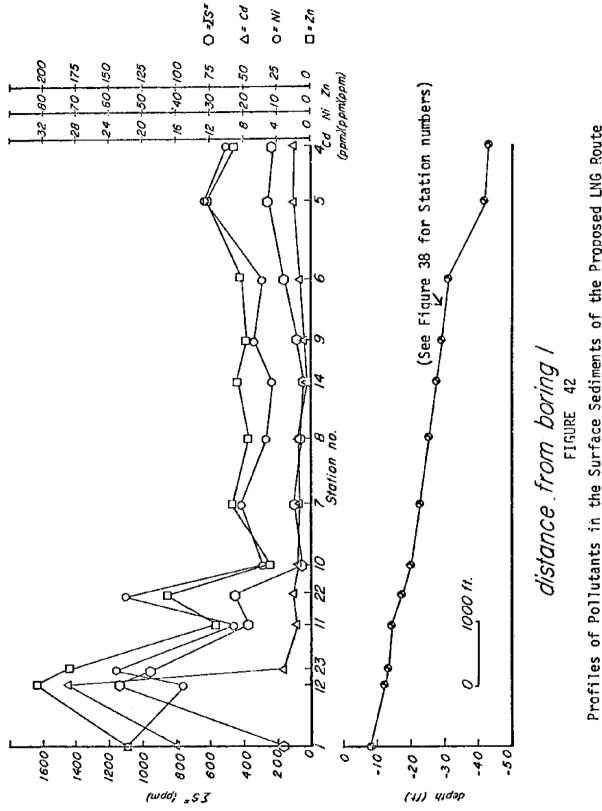
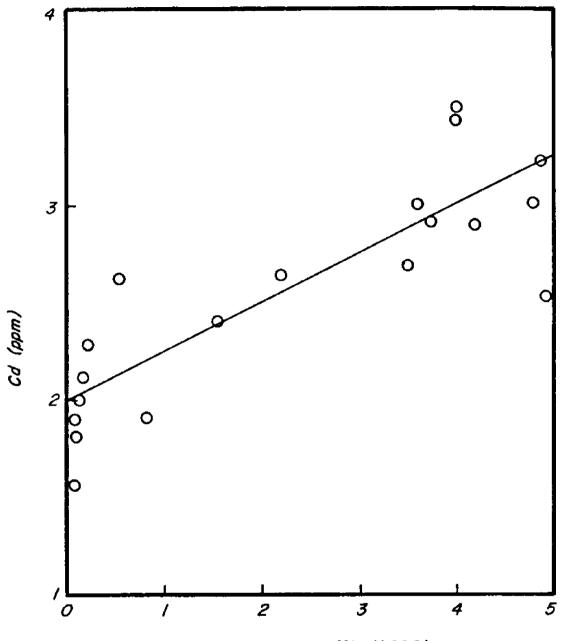
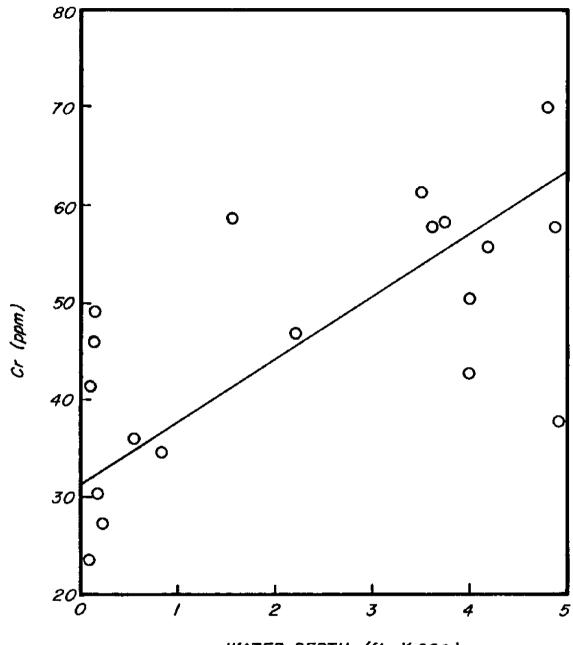

Stations for Surface Sediment Samples in Los Angeles-Long Beach Harbor


FIGURE 37

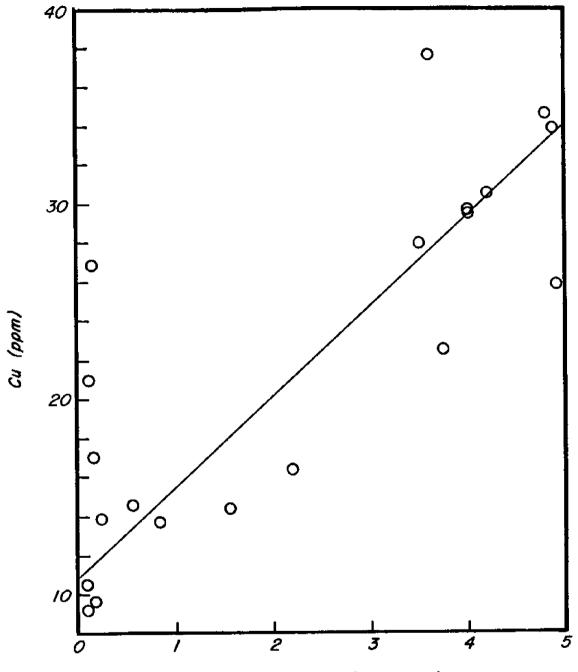

Sampling Stations for the Proposed LNG Route and Dominguez Channel



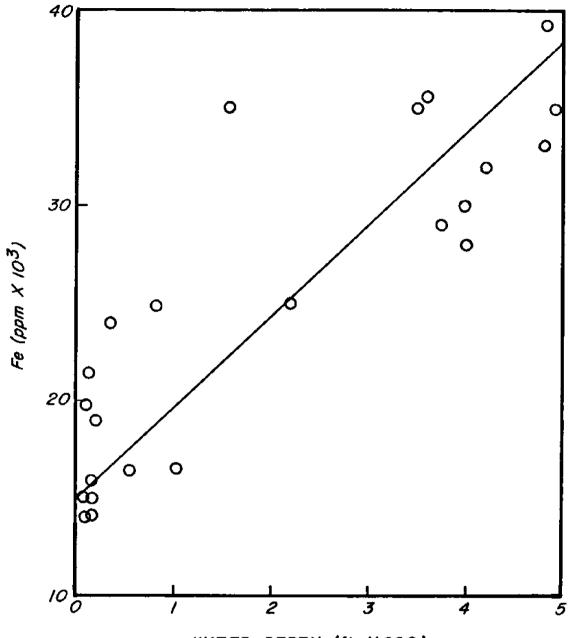
Profiles of Pollutants in the Surface Sediments of the Proposed LNG Route


Profiles of Pollutants in the Surface Sediments of the Proposed LNG Route


WATER DEPTH (ft. X 600)


FIGURE 43 Cadmium Concentration vs. Water Depth in San Pedro Basin

.


WATER DEPTH (ft. X 600)

WATER DEPTH (ft. X600)

FIGURE 45 Copper Concentration vs. Water Depth in San Pedro Basin

WATER DEPTH (ft. X600)

FIGURE 46 Iron Concentration vs. Water Depth in San Pedro Basin

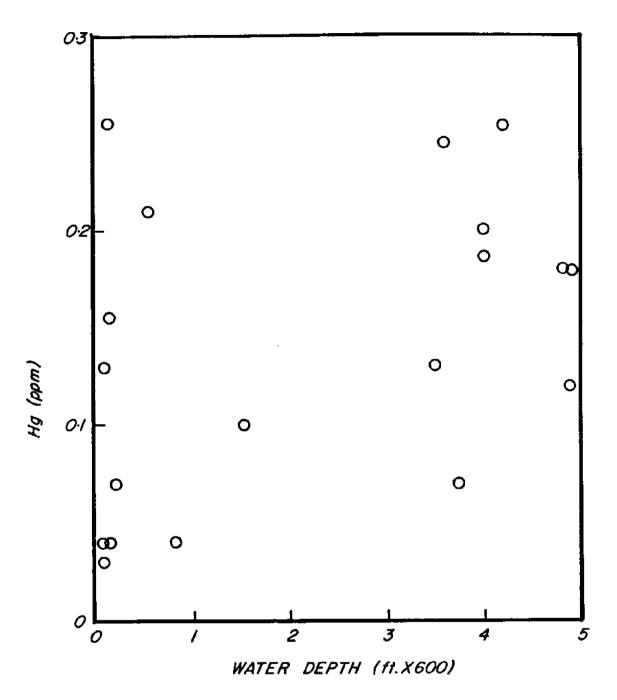
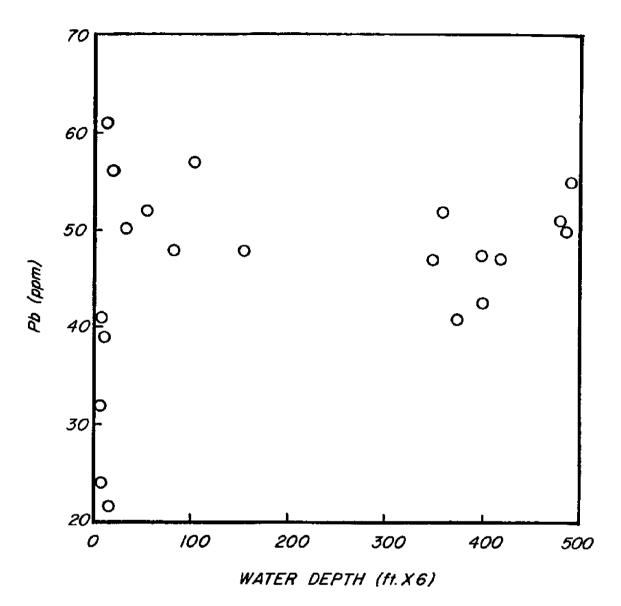
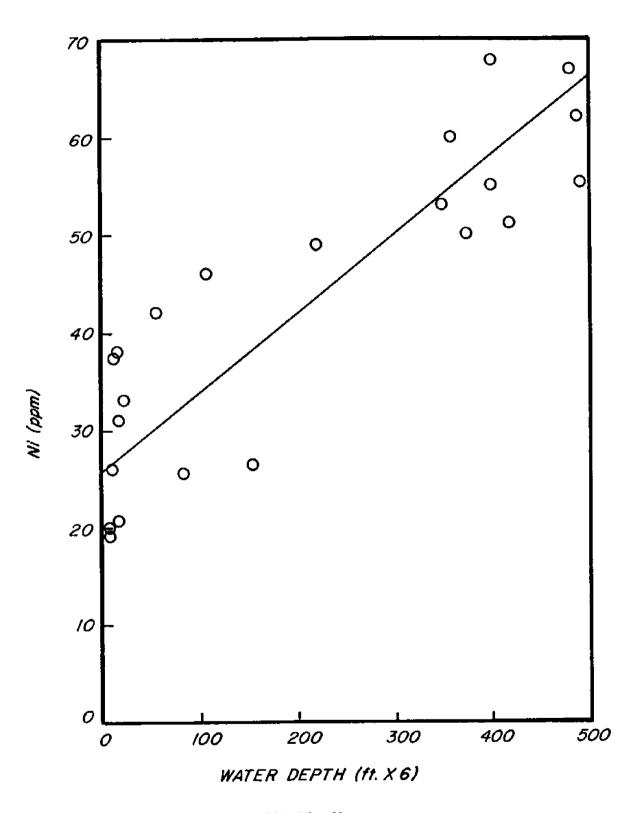
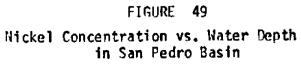
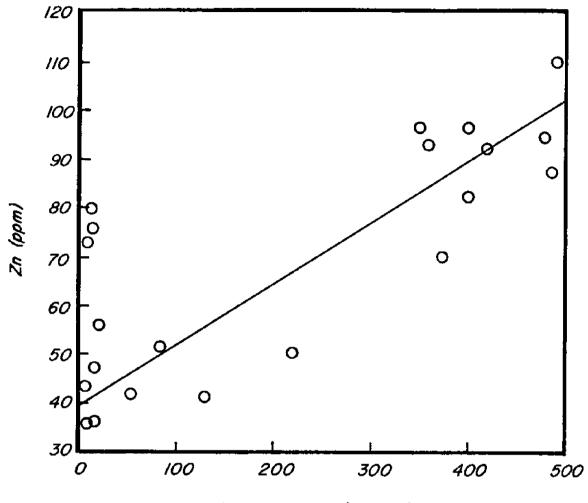
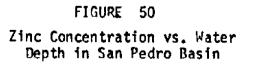
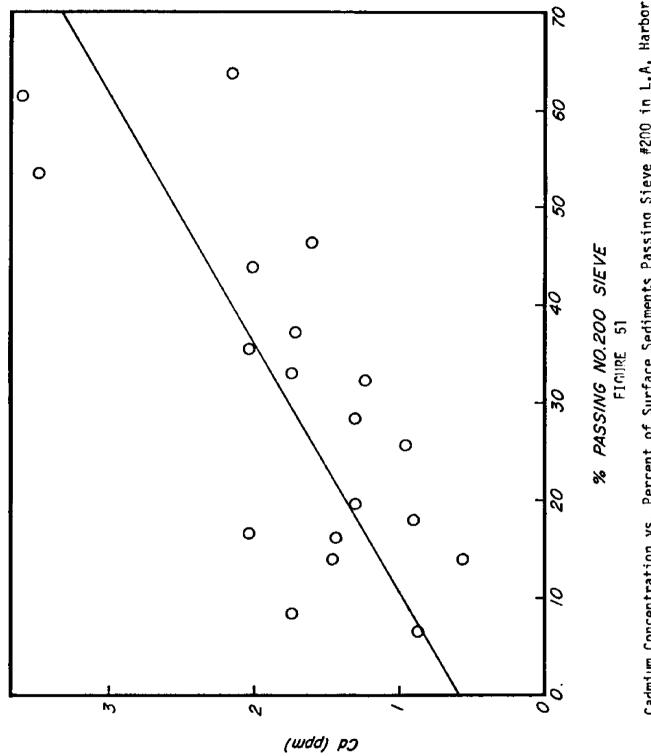


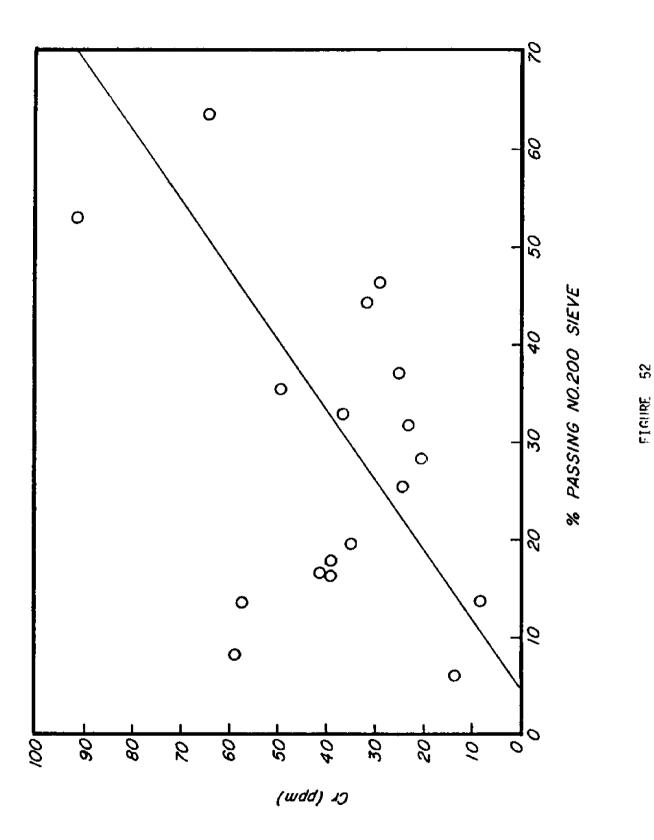
FIGURE 47 Mercury Concentration vs. Mater Depth in San Pedro Basin

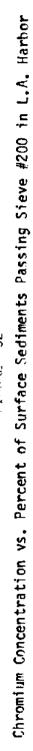
•

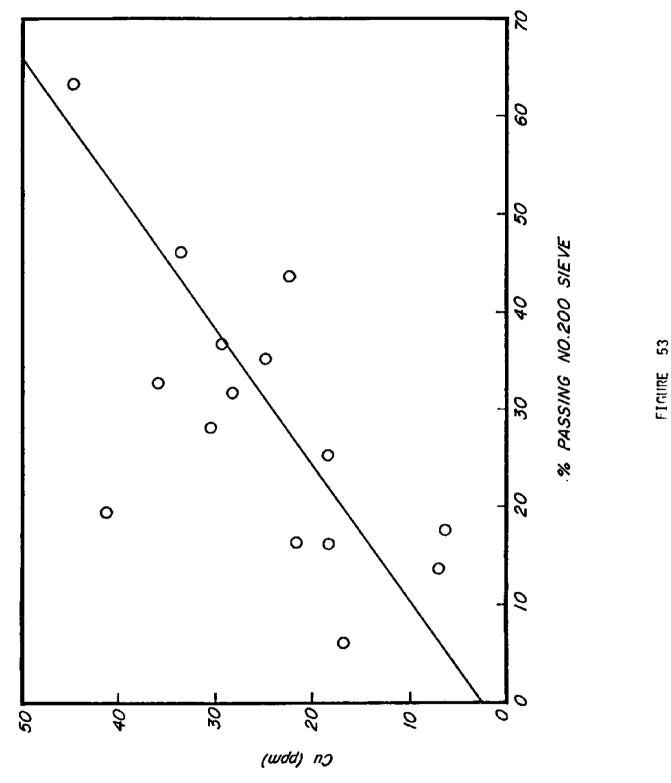





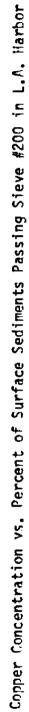

FIGURE 48 Lead Concentration vs. Water Depth in San Pedro Basin

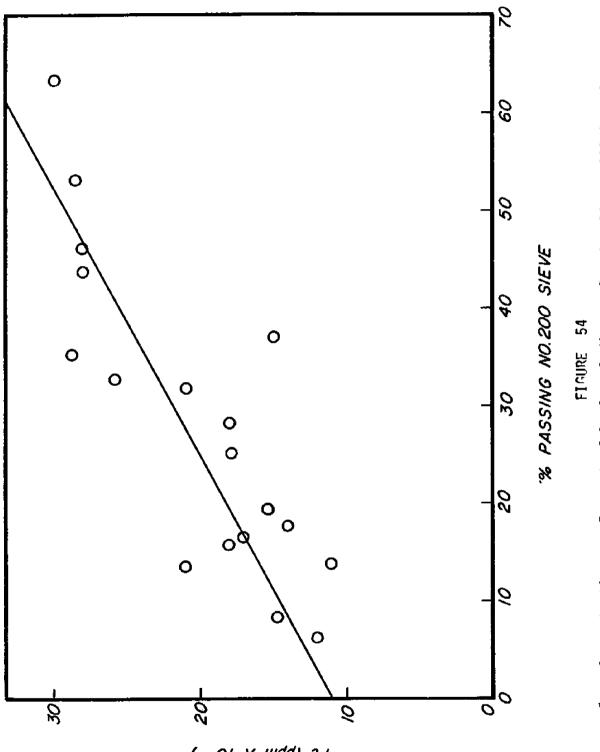


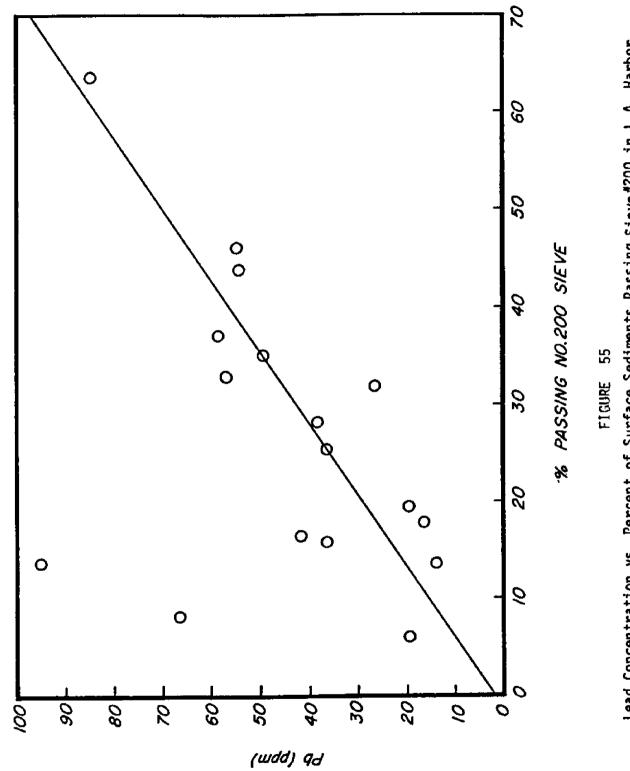


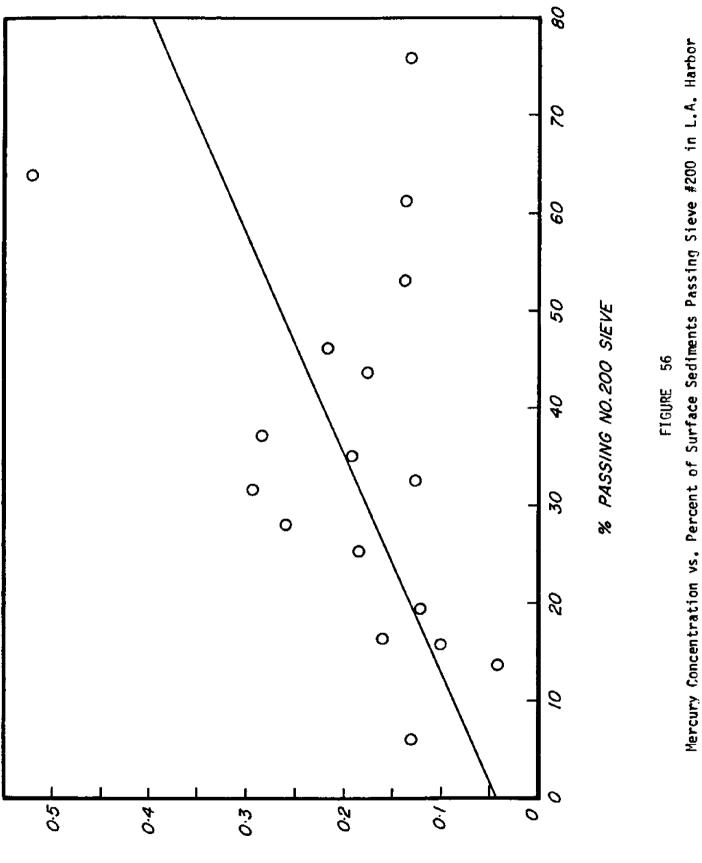

WATER DEPTH (fl. X6)



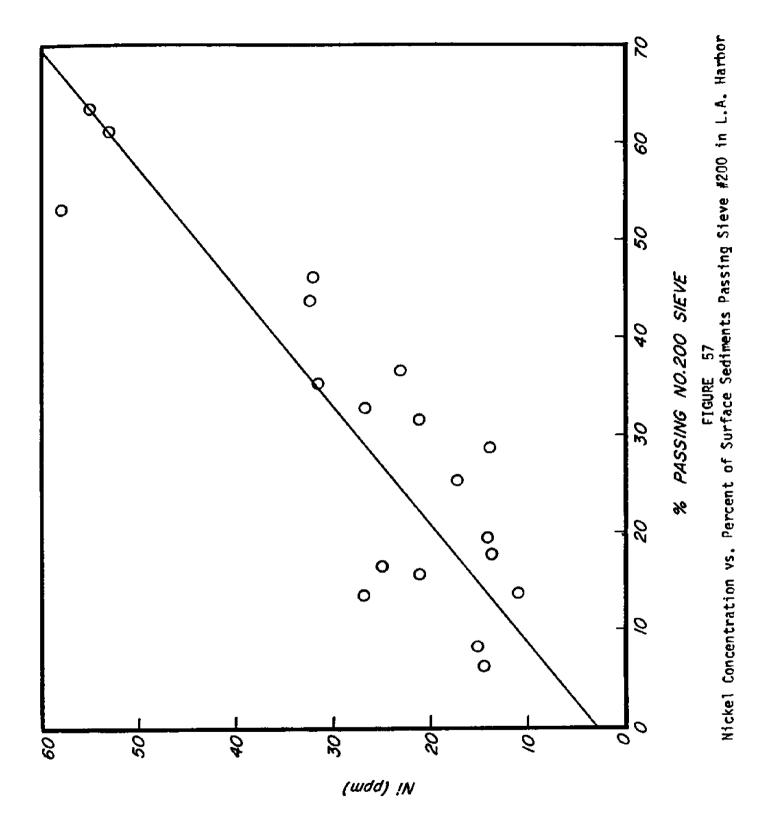


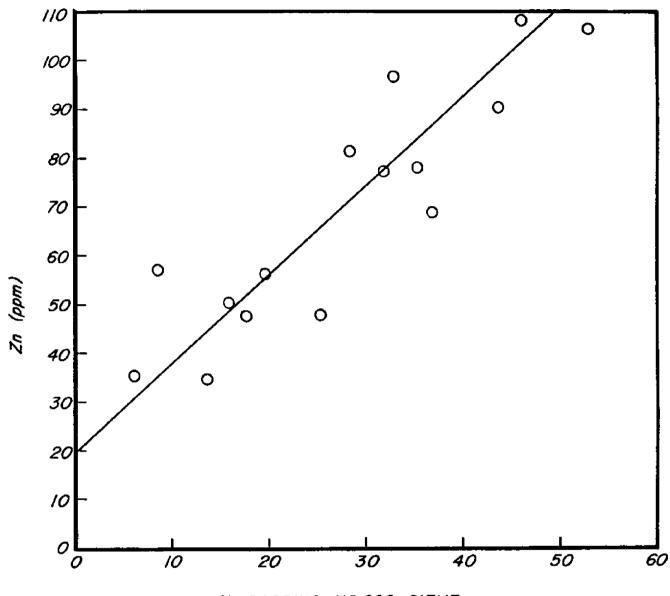

Cadmium Concentration vs. Percent of Surface Sediments Passing Sieve #200 in L.A. Harbor



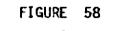


Iron Concentration vs. Percent of Surface Sediments Passing Sieve #200 in L.A. Harbor

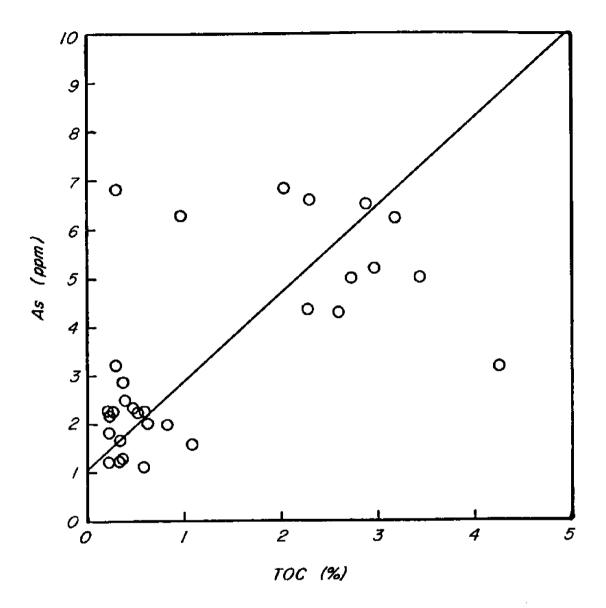

(_{E-}OI X wdd) əd



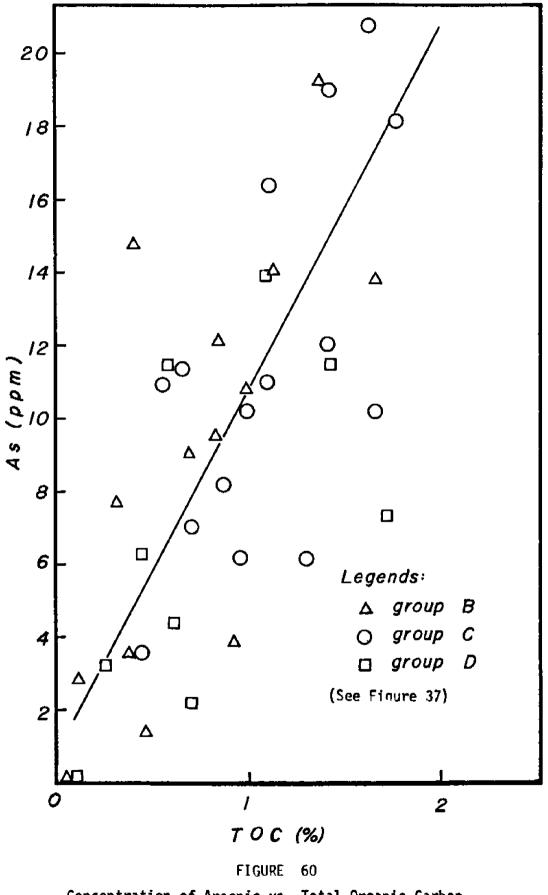
Lead Concentration vs. Percent of Surface Sediments Passing Sieve#200 in L.A. Harbor



(wdd) bH



% PASSING NO.200 SIEVE



Zinc Concentration vs. Percent of Surface Sediments Passing Sieve #200 in L.A. Harbor

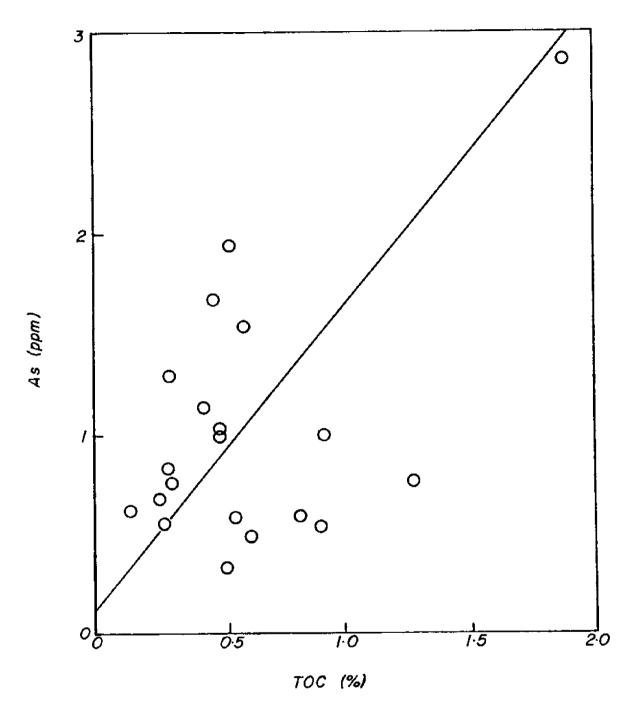
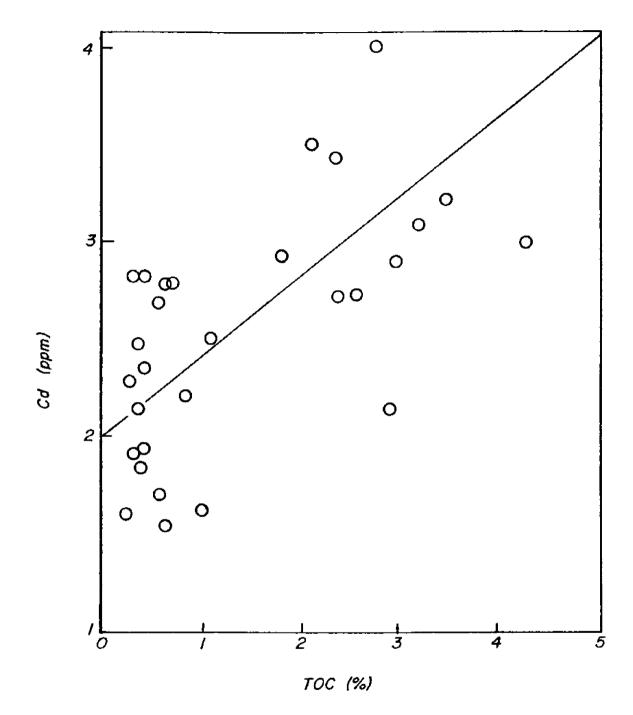
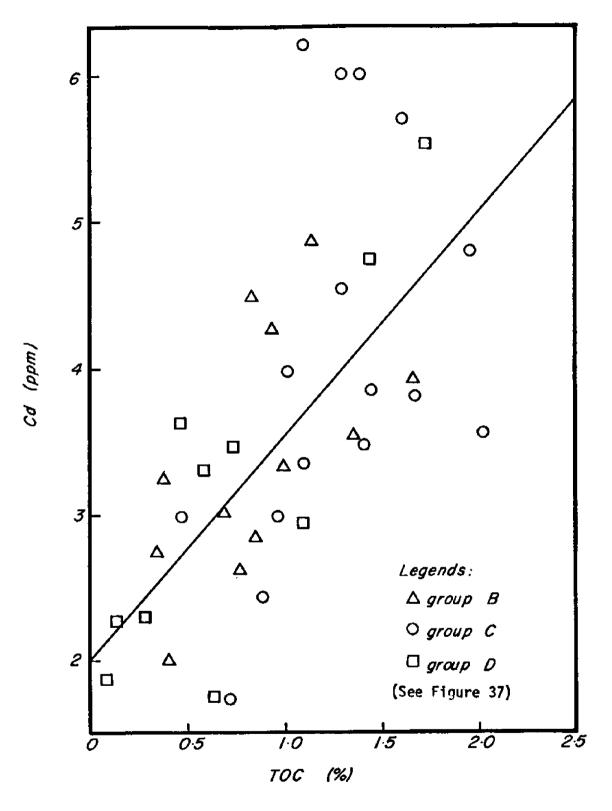


FIGURE 59

Concentration of Arsenic vs. Total Organic Carbon in the Surface Sediments of San Pedro Basin



Concentration of Arsenic vs. Total Organic Carbon in the Surface Sediments of L.A. - L.B. Harbors



Concentration of Arsenic vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

Concentration of Cadmium vs. Total Organic Carbon in the Surface Sediments of San Pedro Basin

FIGURE 63

Concentration of Cadmium vs. Total Organic Carbon in the Surface Sediments of L.A. - L.B. Harbors

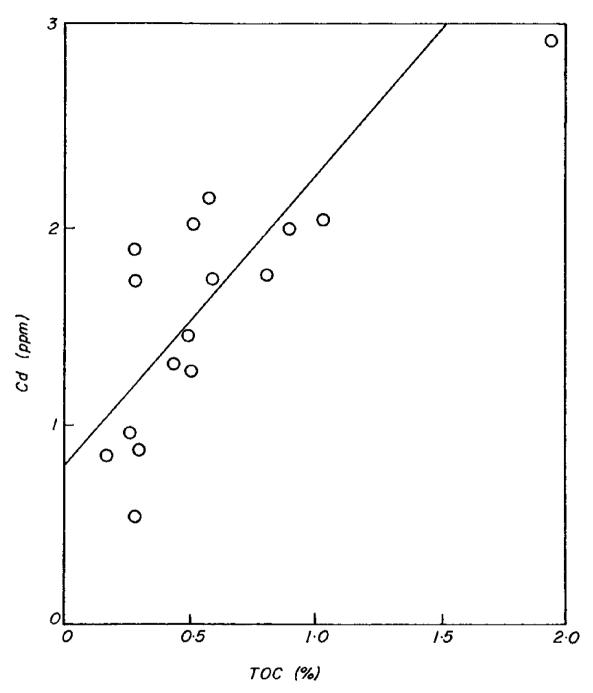
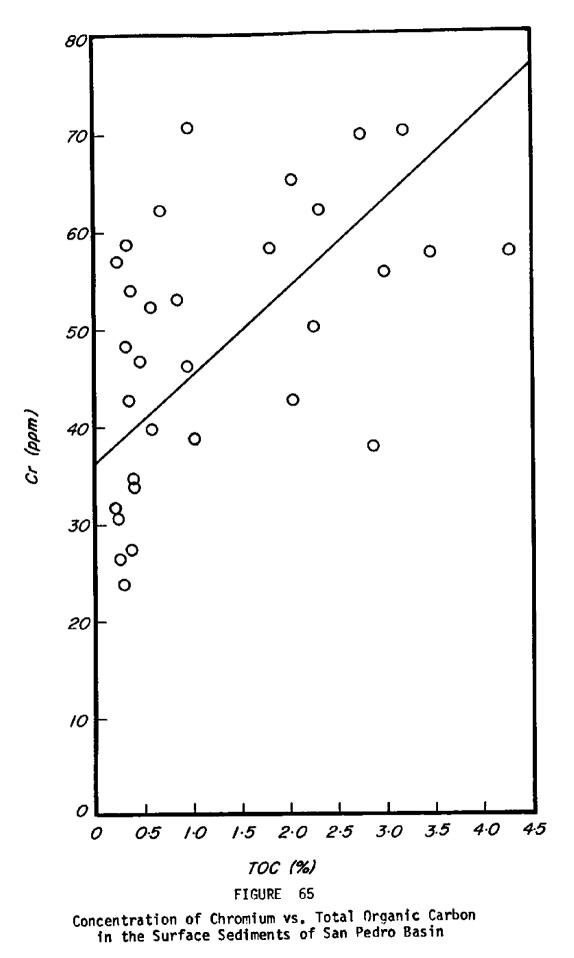
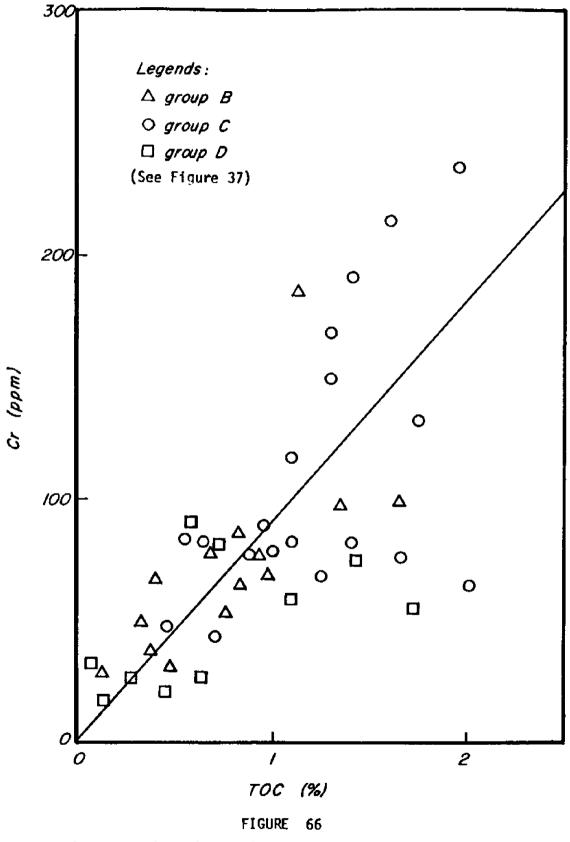
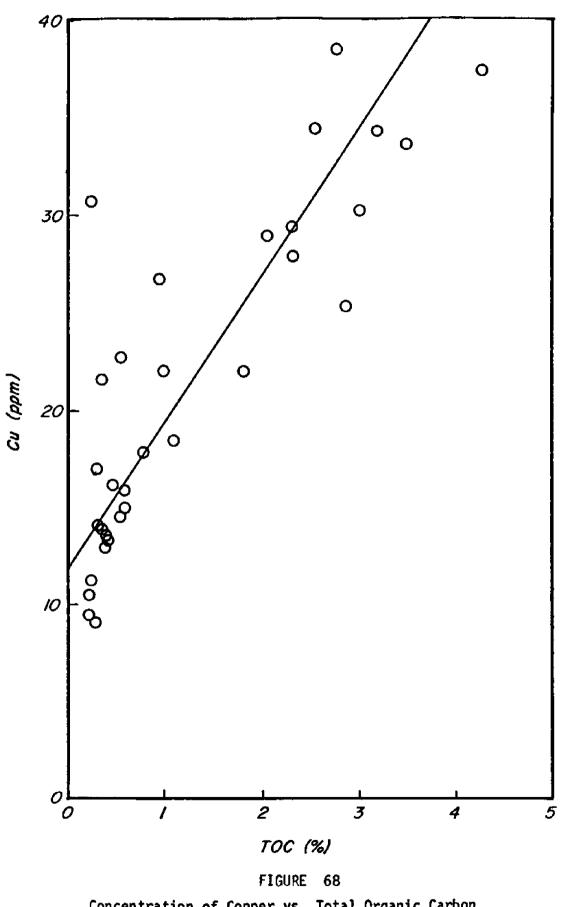
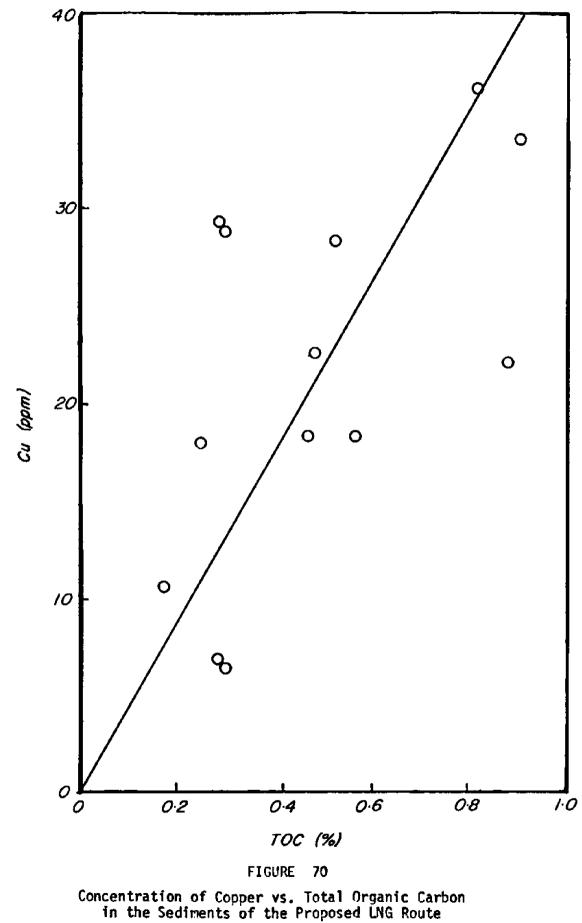




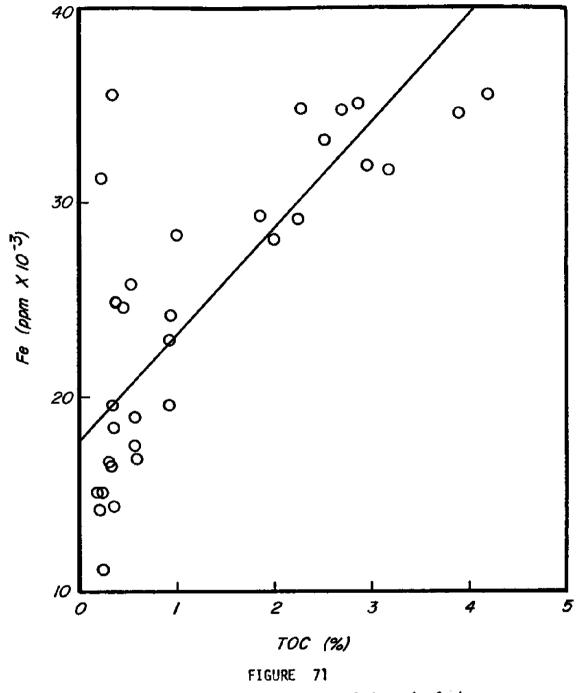
FIGURE 64 Concentration of Cadmium vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

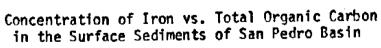


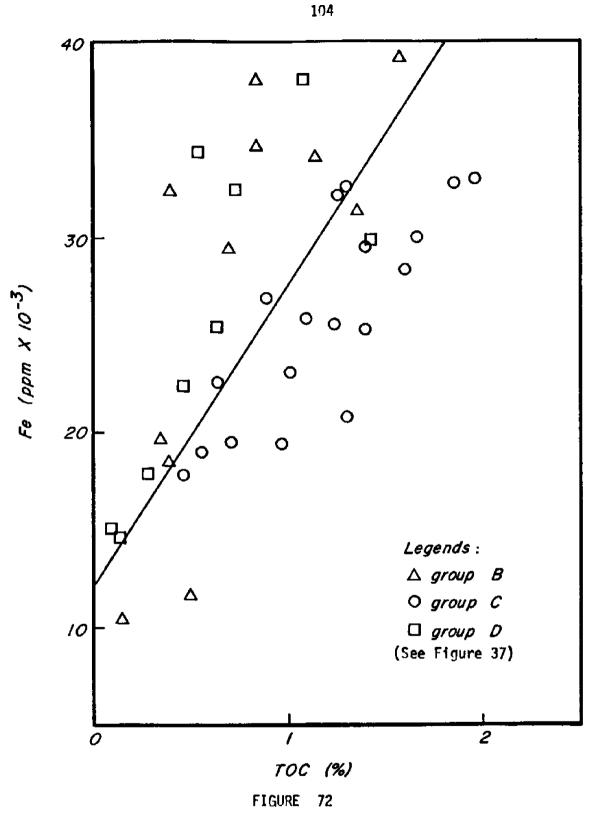
Concentration of Chromium vs. Total Organic Carbon in the Surface Sediments of L.A. - L.B. Harbors

Concentration of Chromium vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

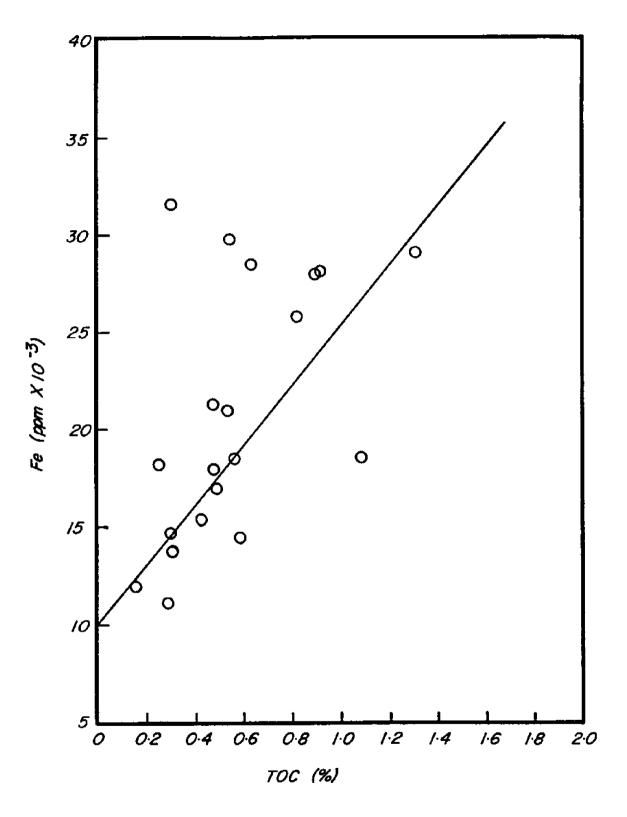


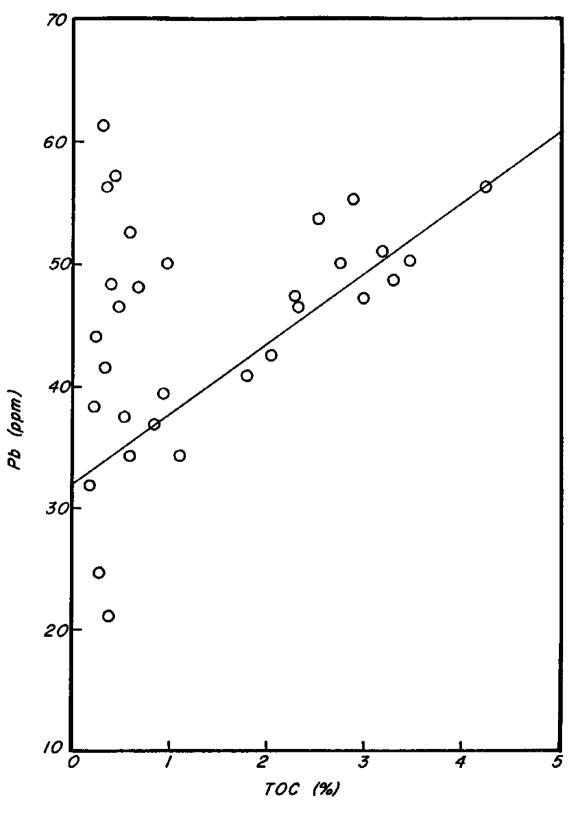

Concentration of Copper vs. Total Organic Carbon in the Surface Sediments of San Pedro Basin


100



Concentration of Copper vs. Total Organic Carbon in the Surface Sediments of L.A. - L.B. Harbors





Concentration of Iron vs. Total Organic Carbon in the Surface Sediments of L.A.-L.B. Harbors

Concentration of Iron vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

Concentration of Lead vs. Total Organic Carbon in the Surface Sediments of San Pedro Basin

•

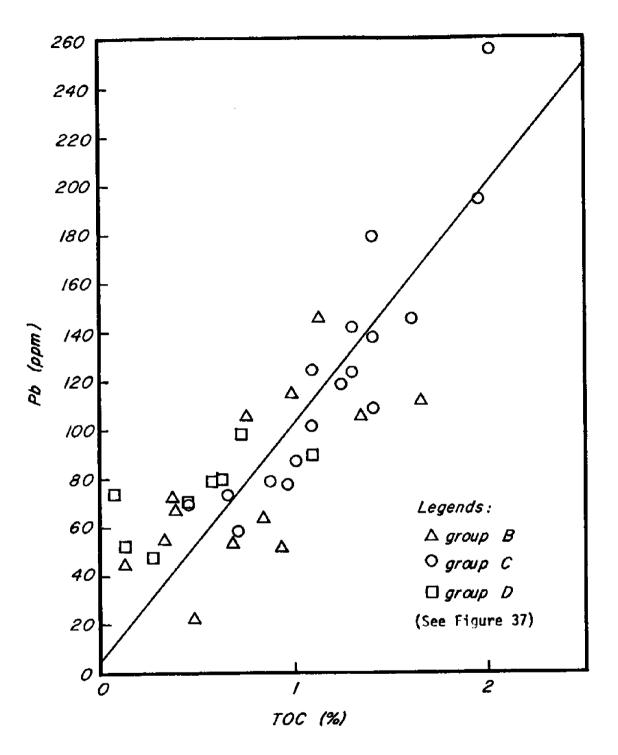
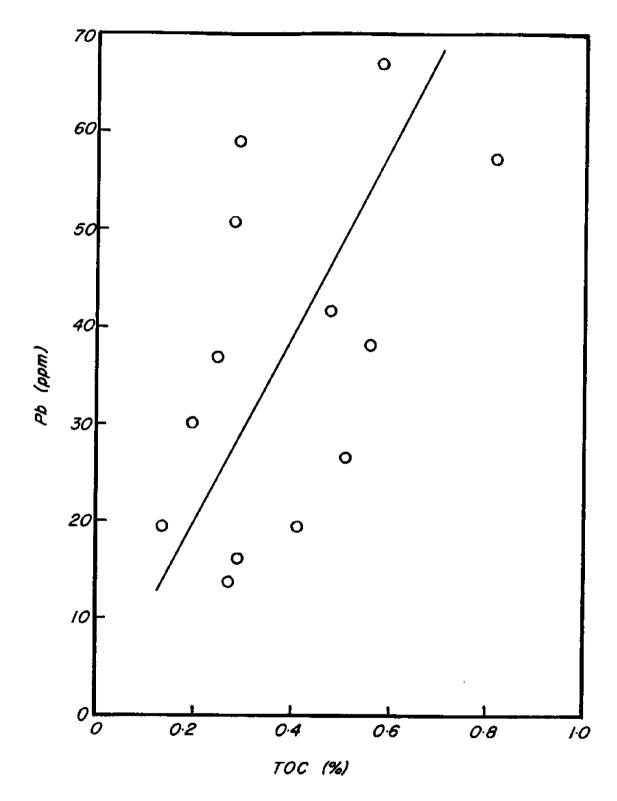
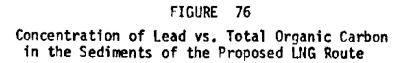
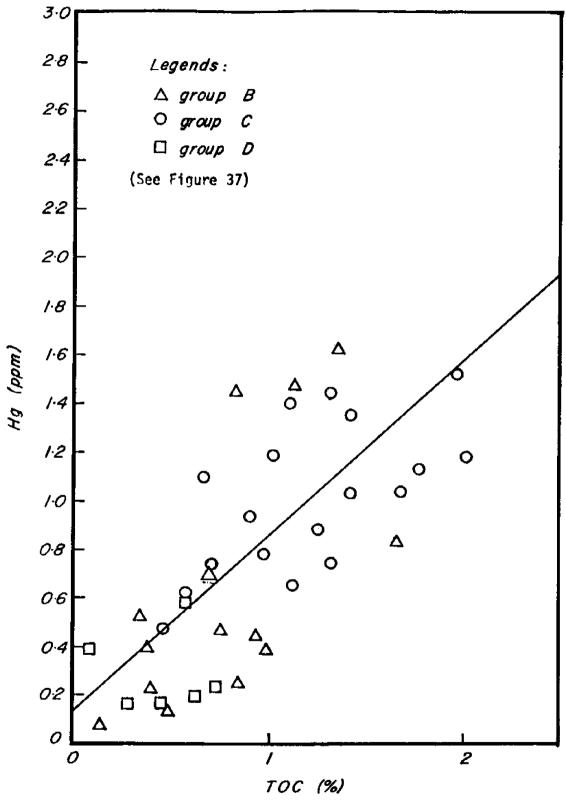
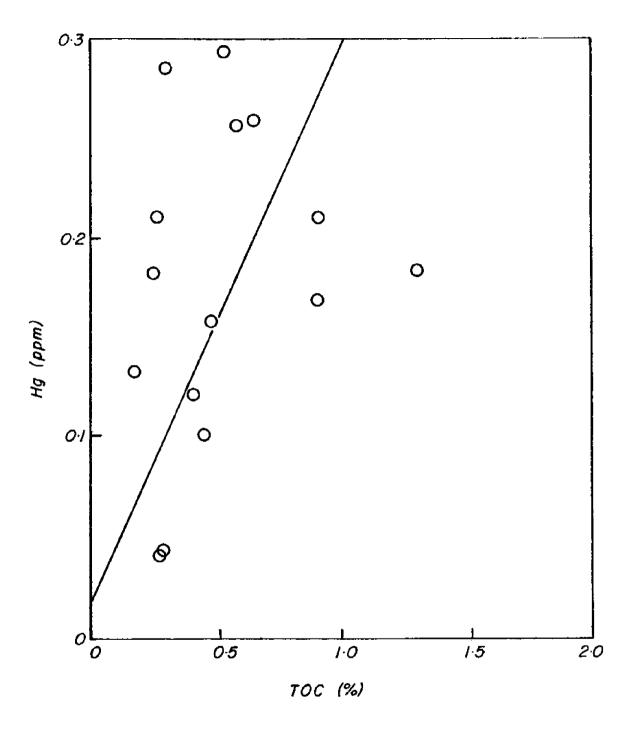
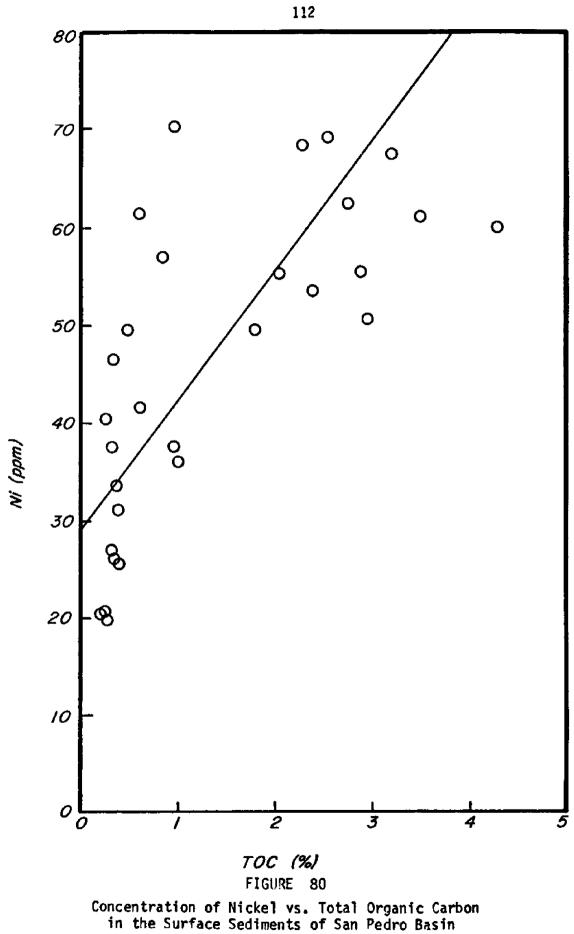




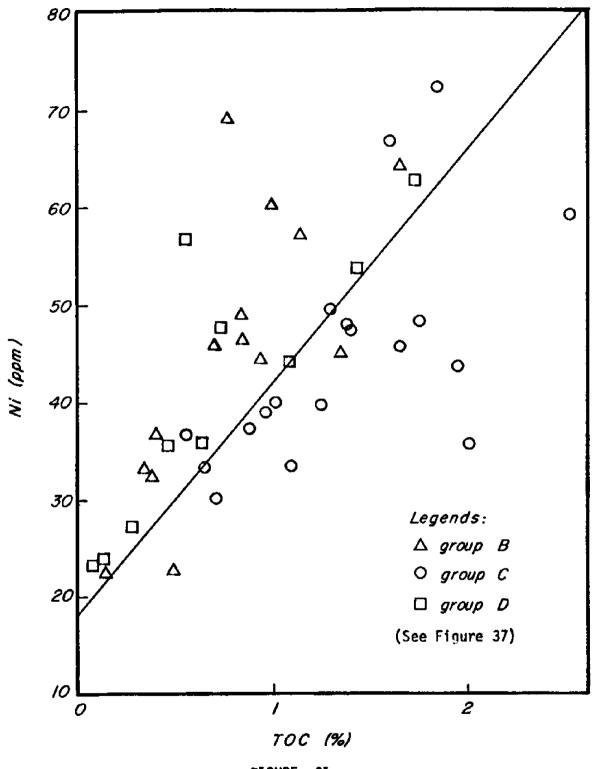
FIGURE 75

Concentration of Lead vs. Total Organic Carbon in the Surface Sediments of L.A.- L.B. Harbors






Concentration of Mercury vs. Total Organic Carbon in the Surface Sediments of San Pedro Basin



Concentration of Mercury vs. Total Organic Carbon in the Surface Sediments of L.A. - L.B. Harbors

Concentration of Nickel vs. Total Organic Carbon in the Surface Sediments of L.A.-L.B. Harbors

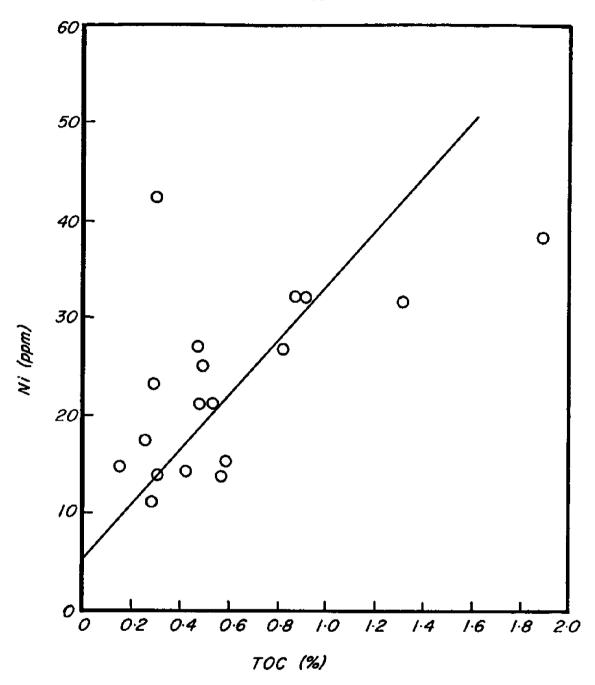
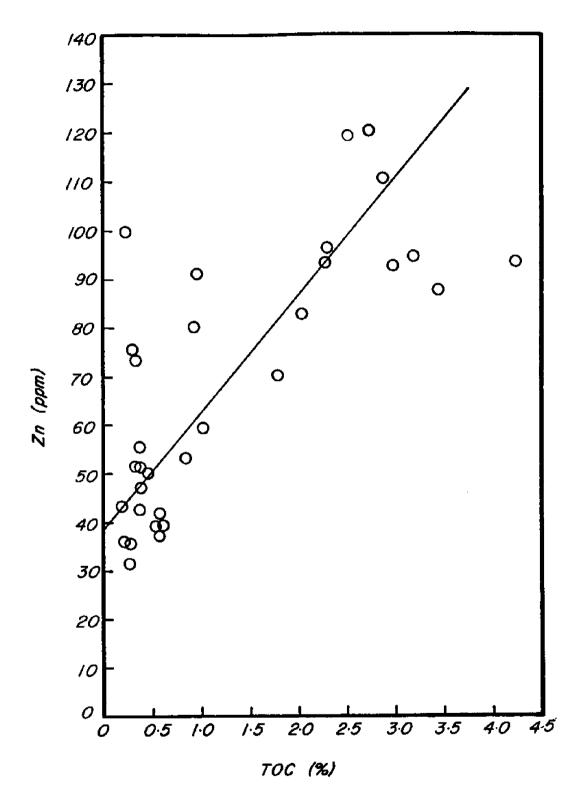
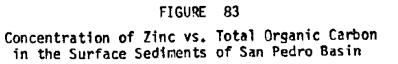




FIGURE 82 Concentration of Nickel vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

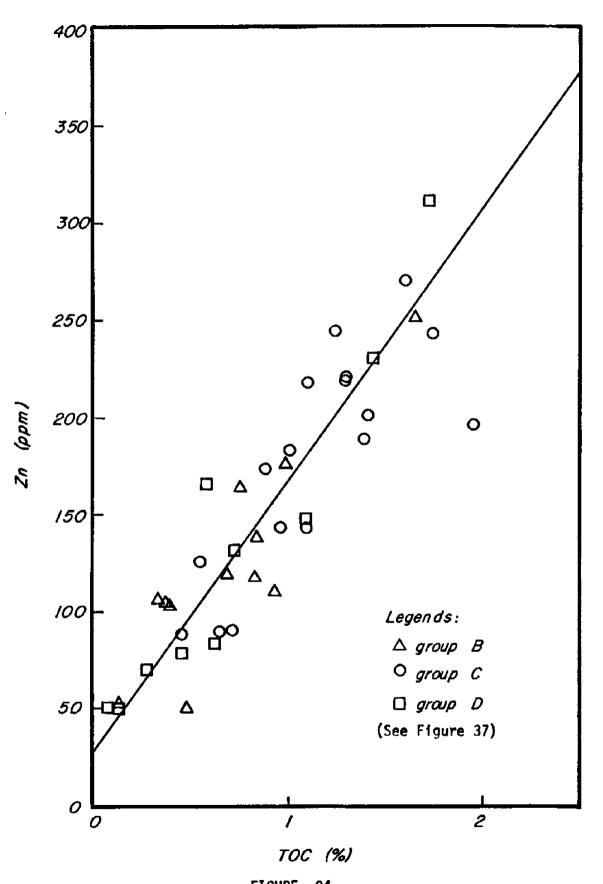


FIGURE 84 Concentration of Zinc vs. Total Organic Carbon in the Surface Sediments of L.A.-L.B. Harbors

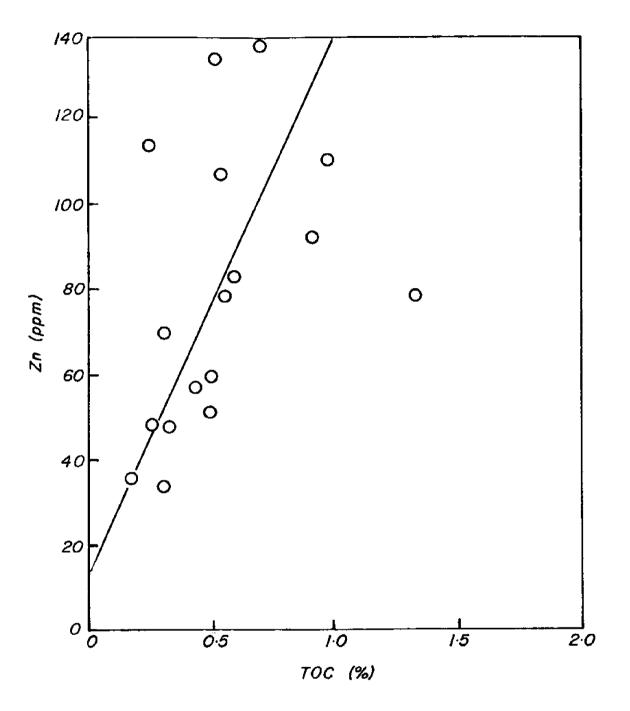
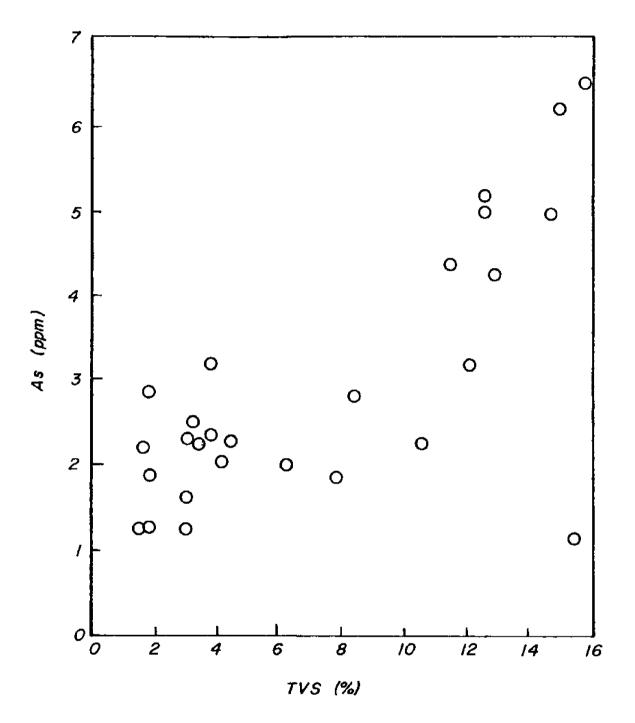
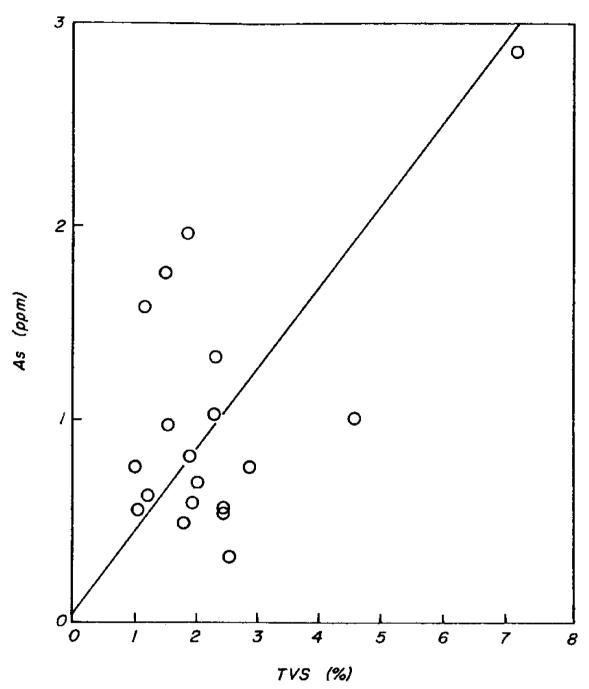
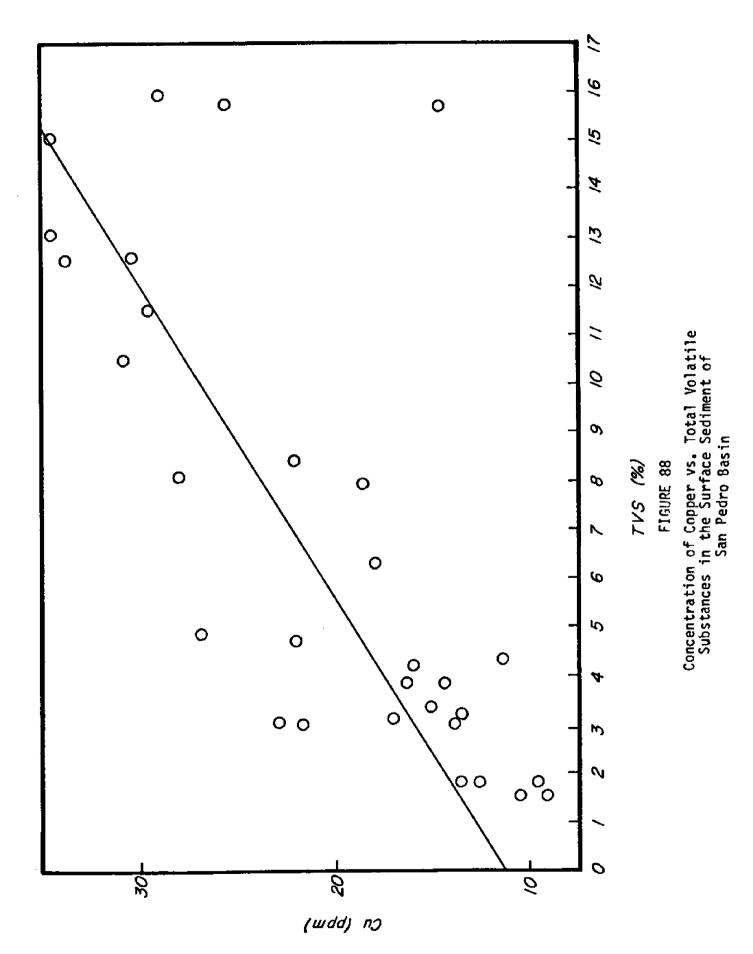
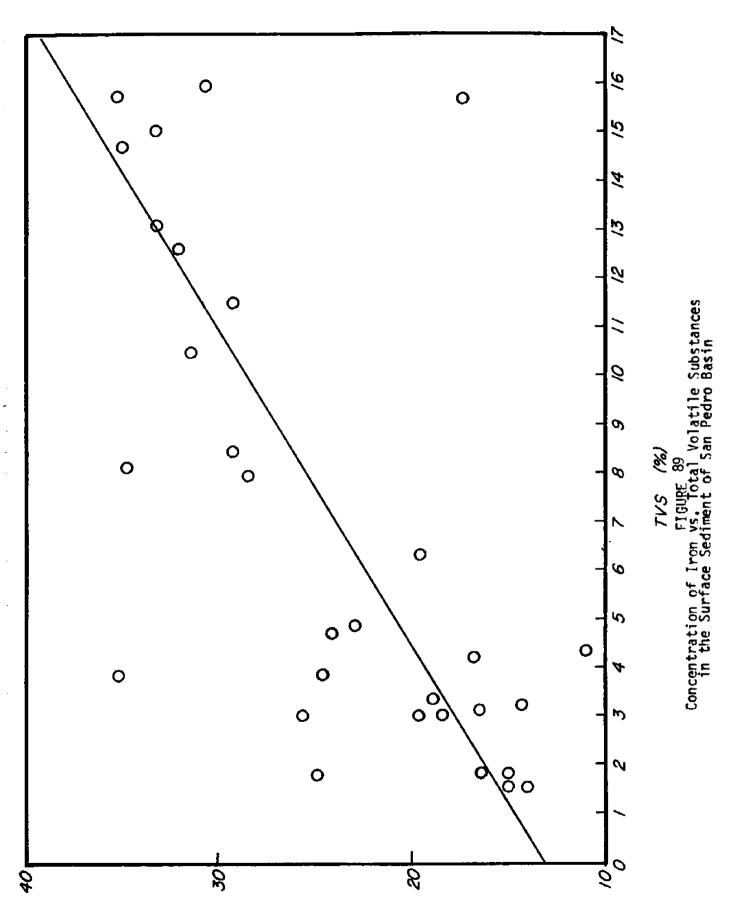
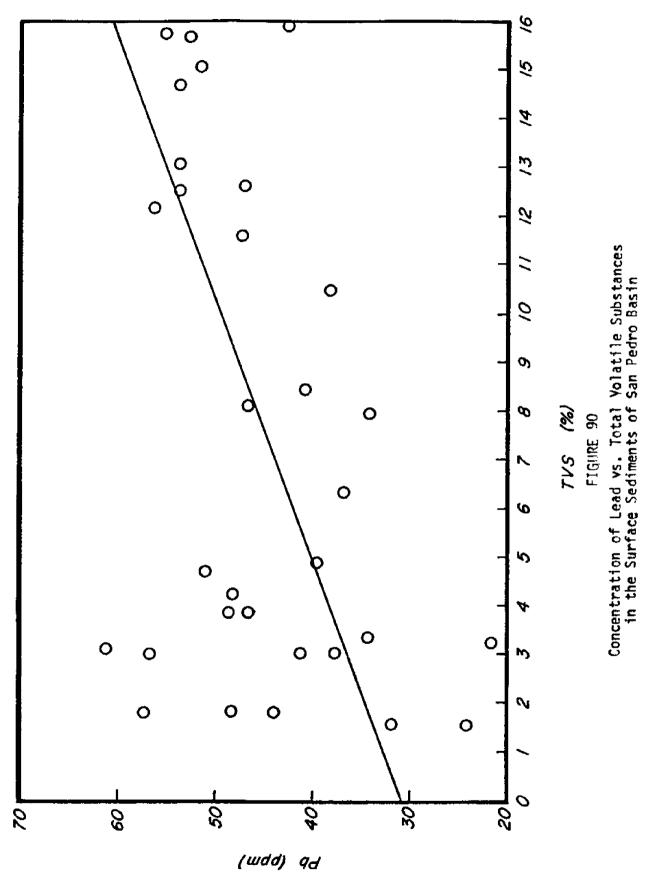


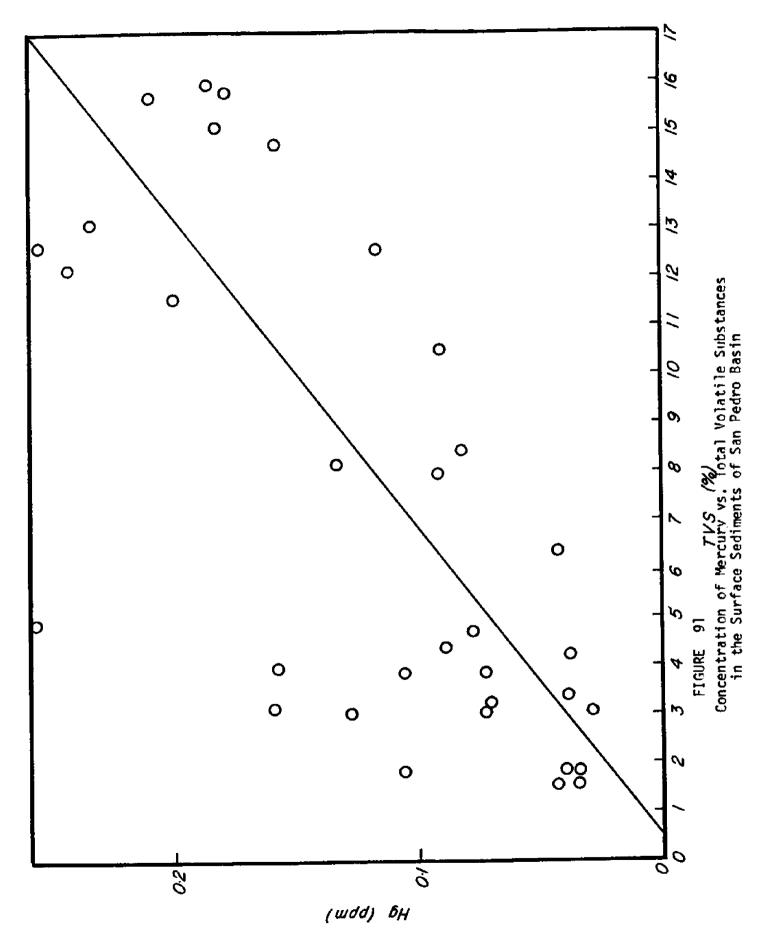
FIGURE 85 Concentration of Zinc vs. Total Organic Carbon in the Sediments of the Proposed LNG Route

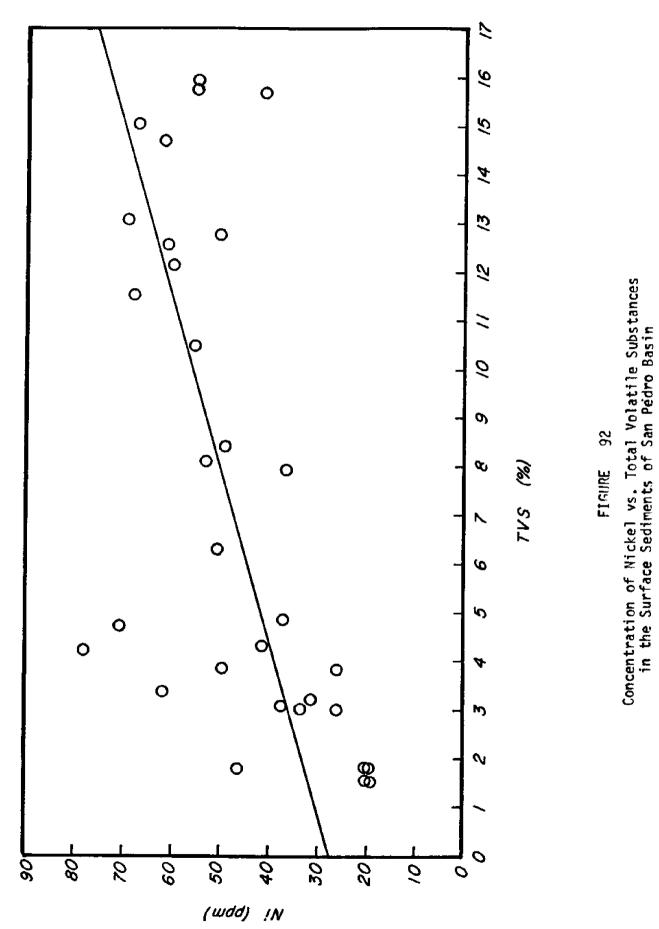



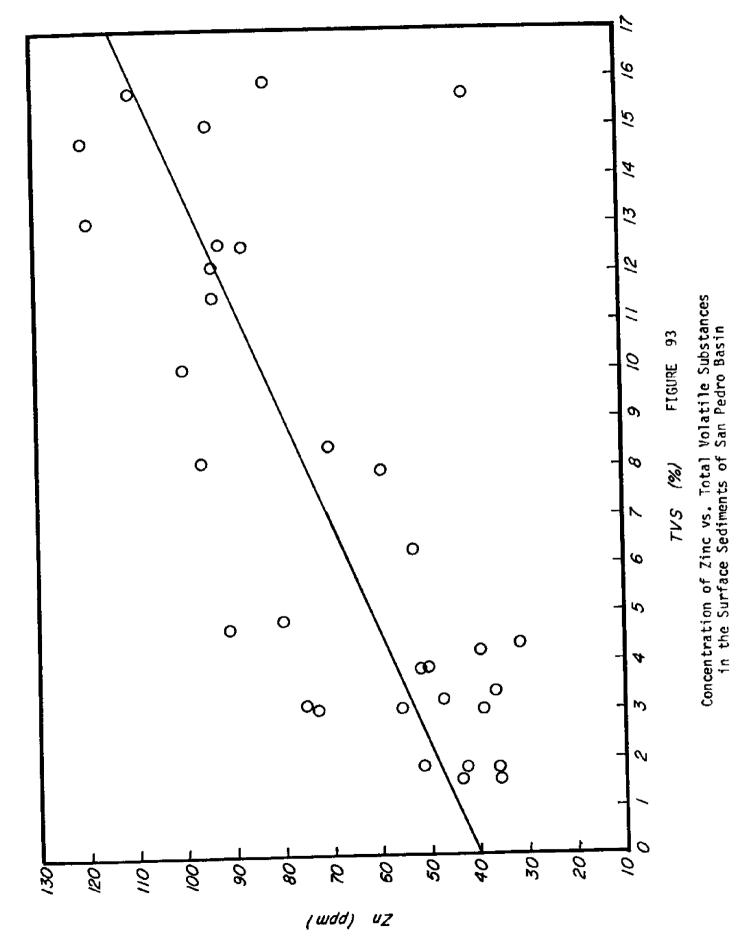

FIGURE 86 Concentration of Arsenic vs. Total Volatile Substances in the Surface Sediments of San Pedro Basin

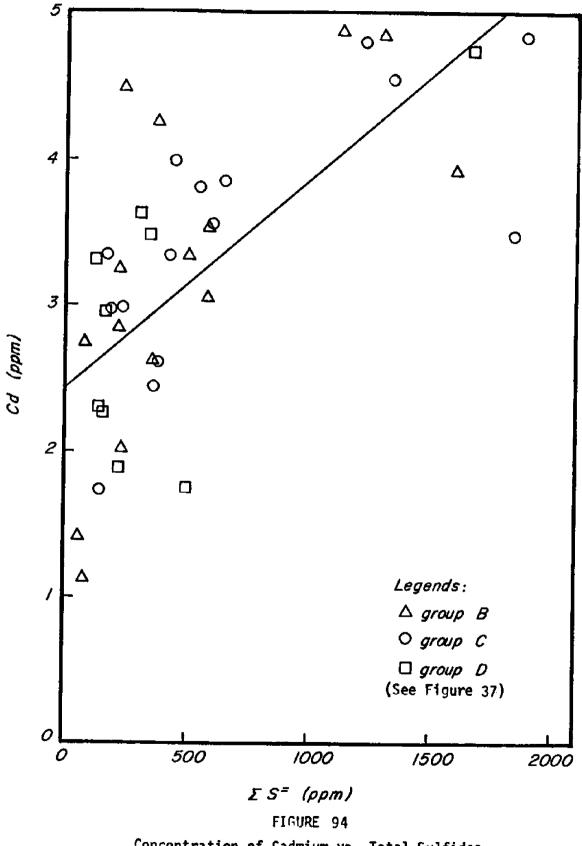

.

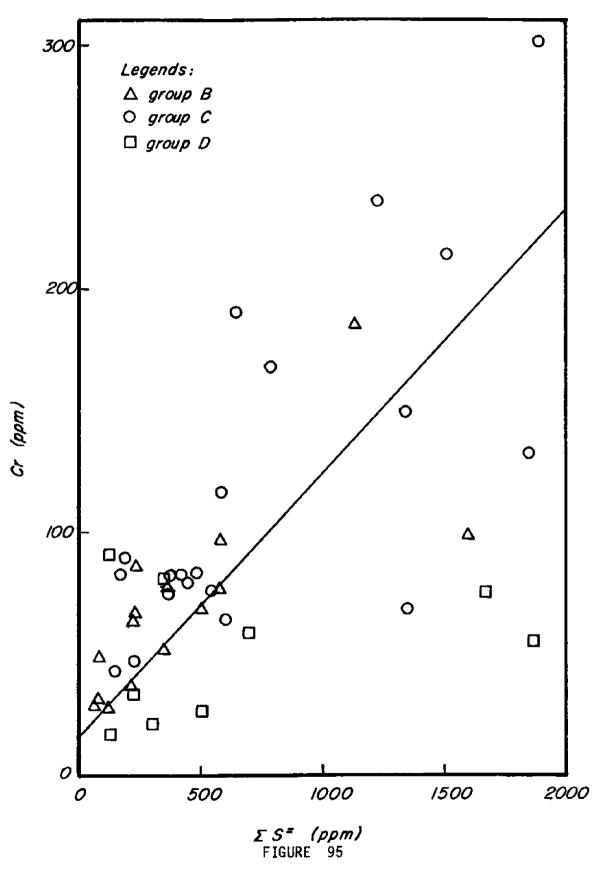


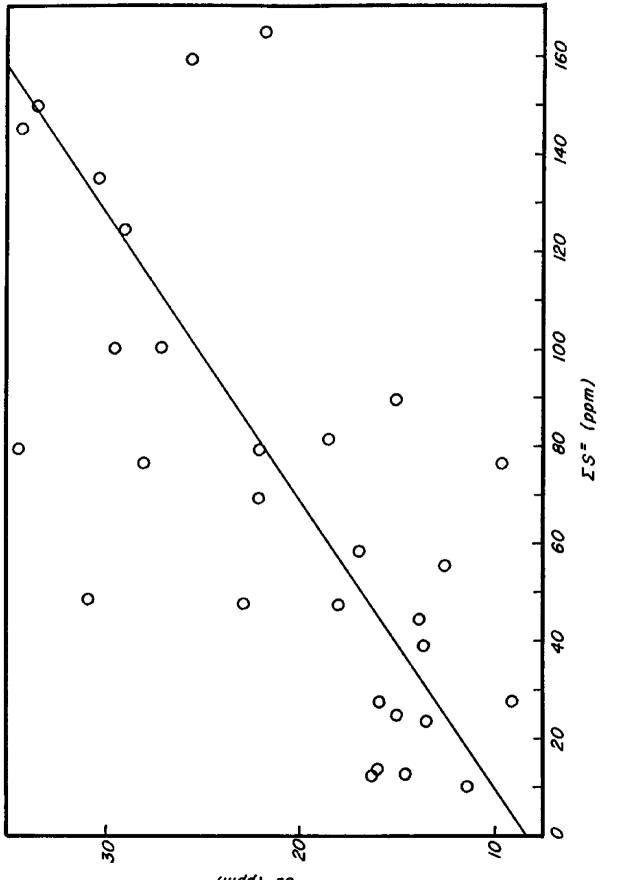

Concentration of Arsenic vs. Total Volatile Substances in the Sediments of the Proposed LNG Route



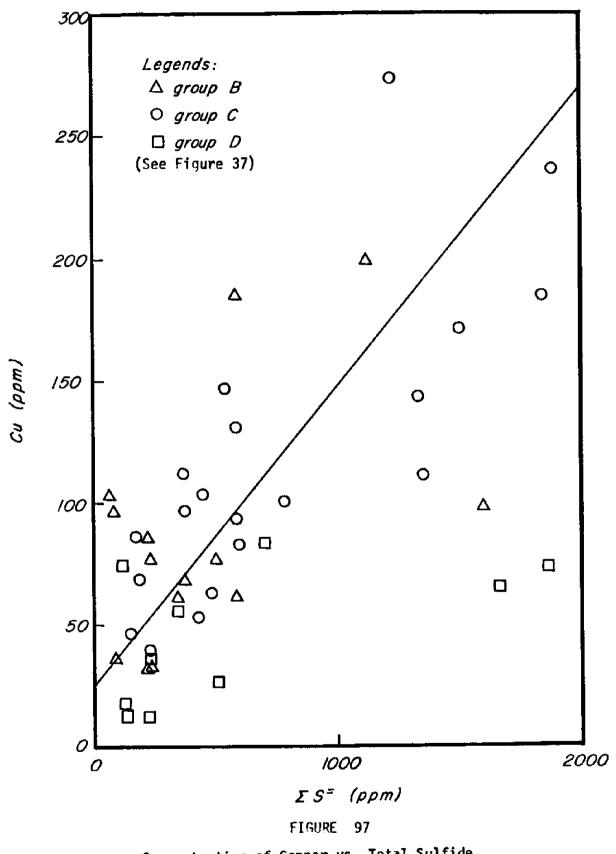



(_EOIX Wdd) əj

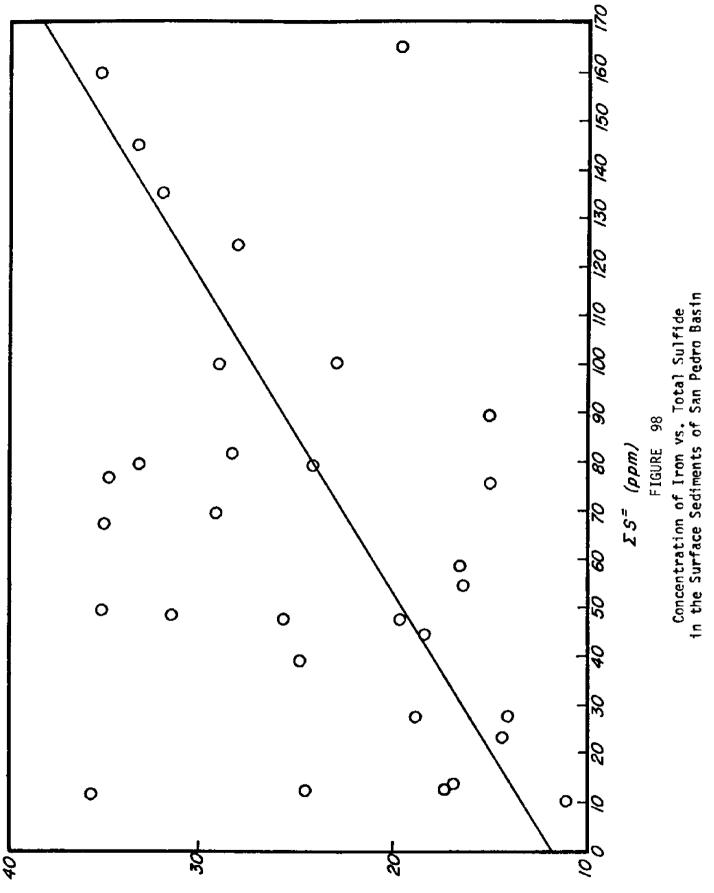




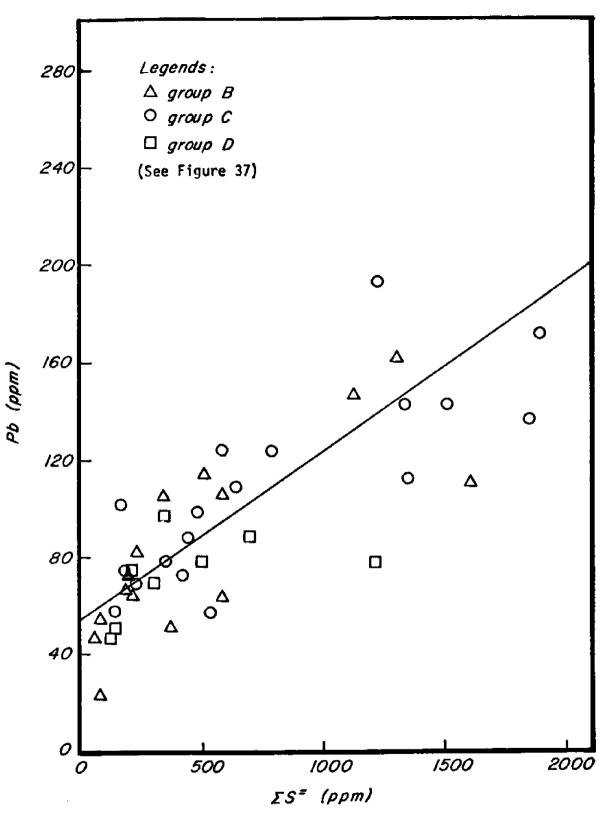
Concentration of Cadmium vs. Total Sulfides in the Surface Sediment of L.A. - L.B. Harbors

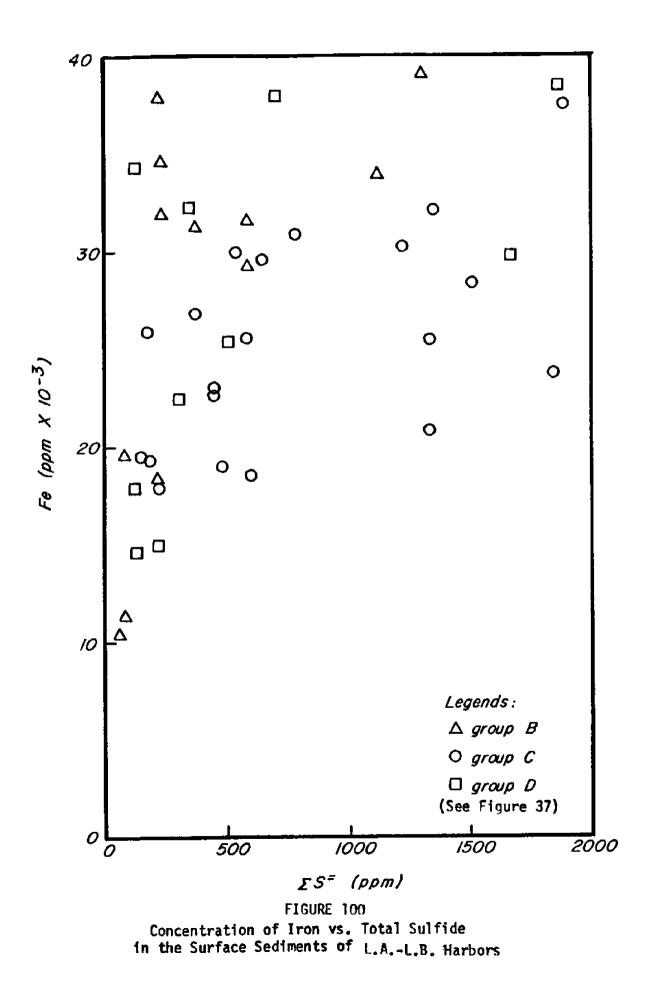


Concentration of Chromium vs. Total Sulfides in the Surface Sediment of L.A. - L.B. Harbors



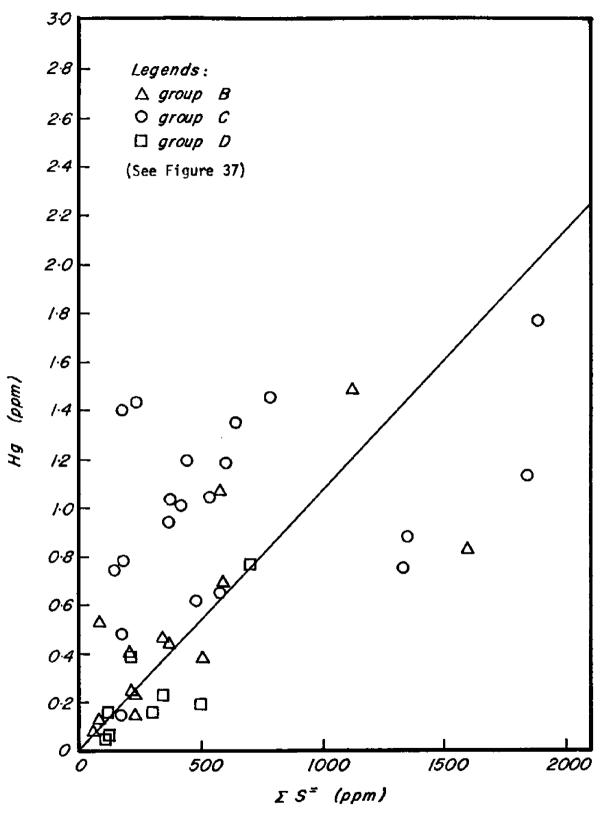
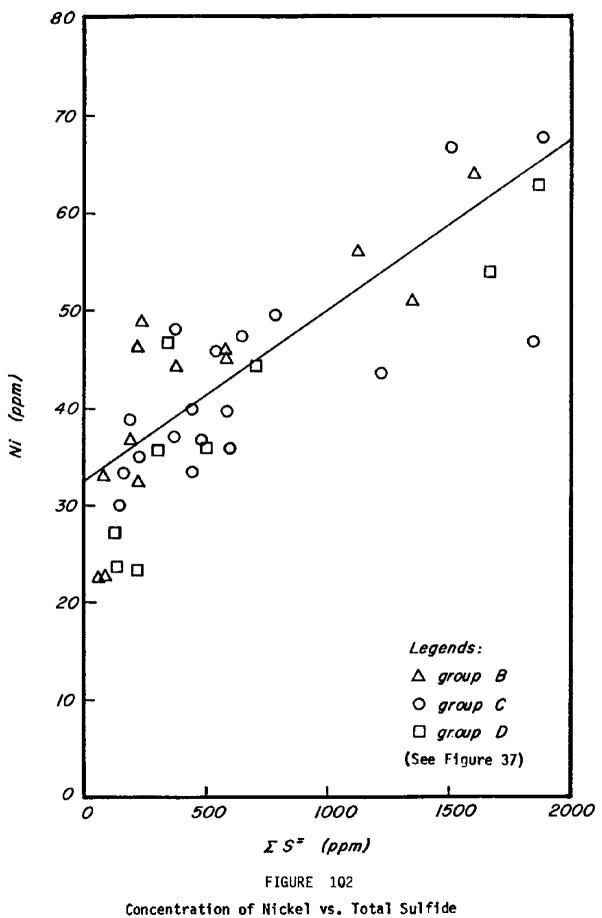
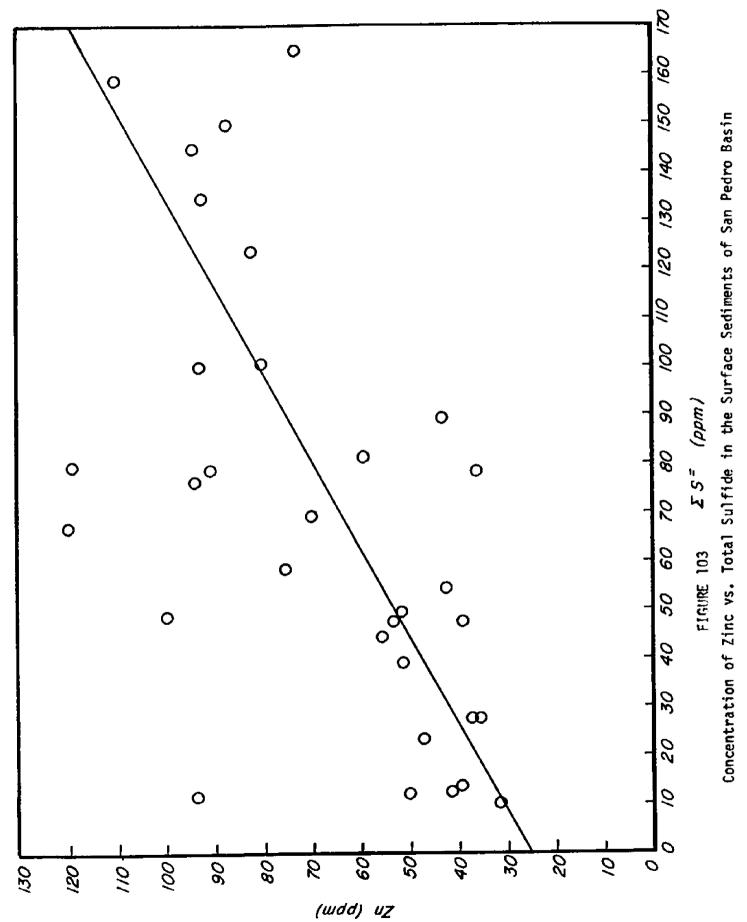
Concentration of Copper vs. Total Sulfide in the Surface Sediments of San Pedro Basin

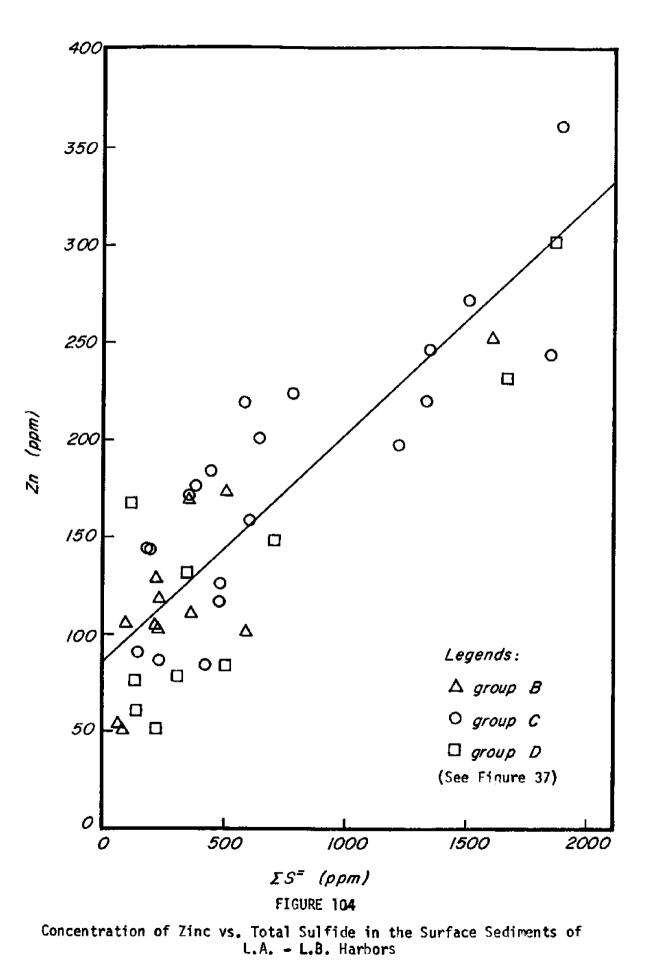

(wdd) ng


Concentration of Copper vs. Total Sulfide in the Surface Sediments of L.A. - L.B. Harbors

(₂0| x wdd) ə<u>-</u>

Concentration of Lead vs. Total Sulfide in the Surface Sediments of L.A. - L.B. Harbors


FIGURE 101

Concentration of Mercury vs. Total Sulfide in the Surface Sediments of L.A. - L.B. Harbors

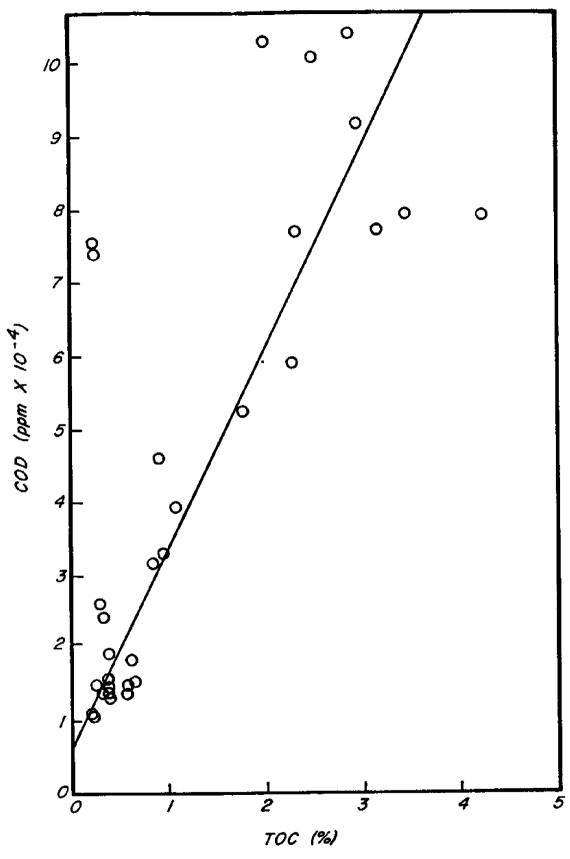
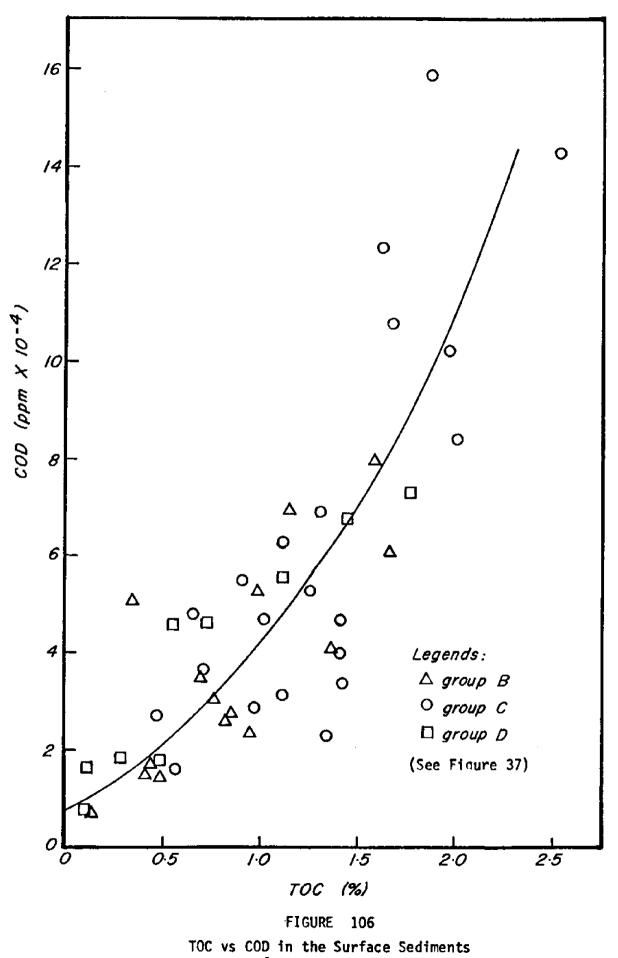
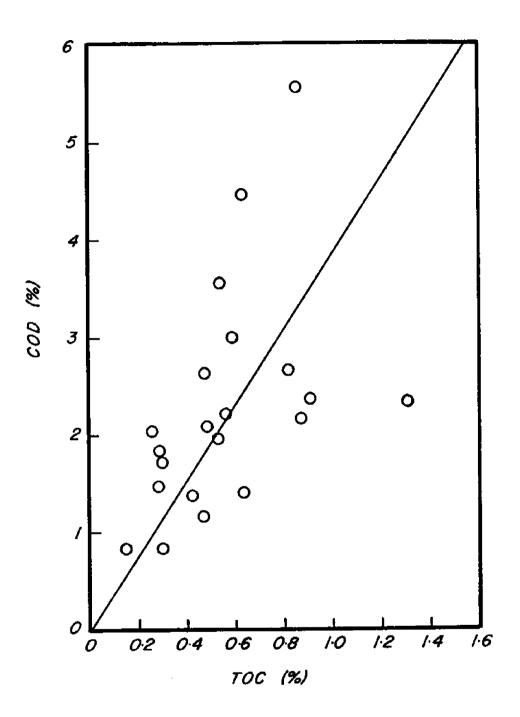
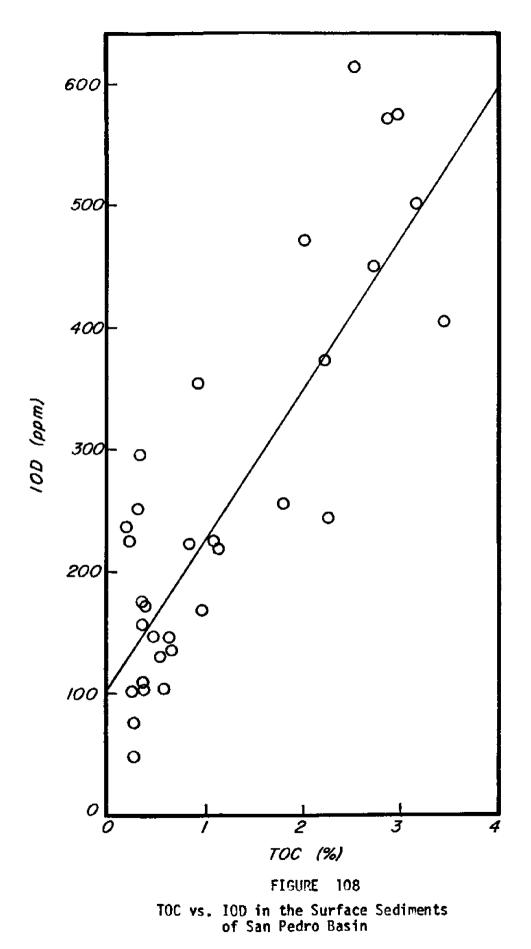
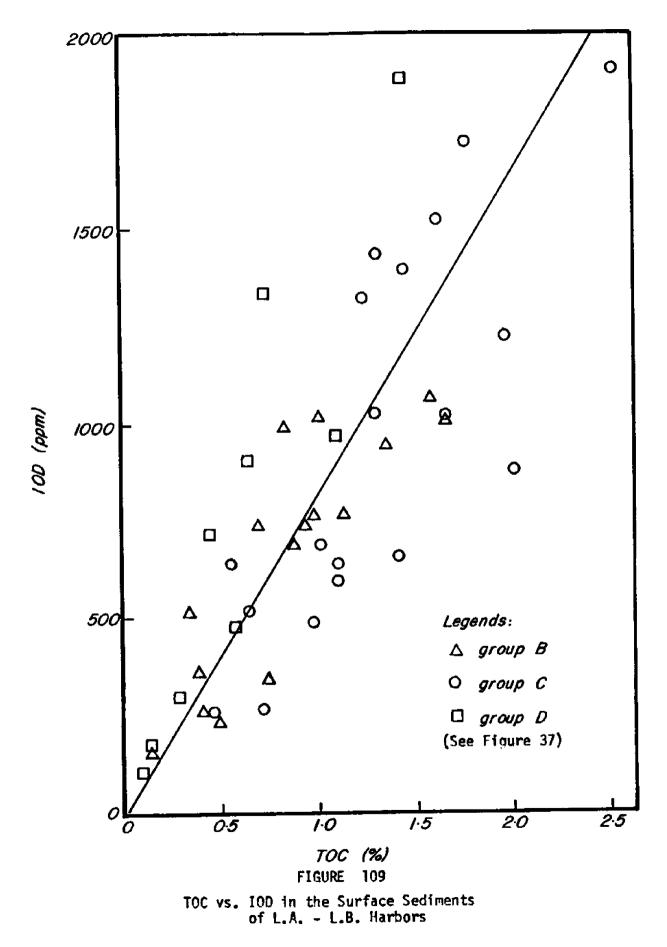
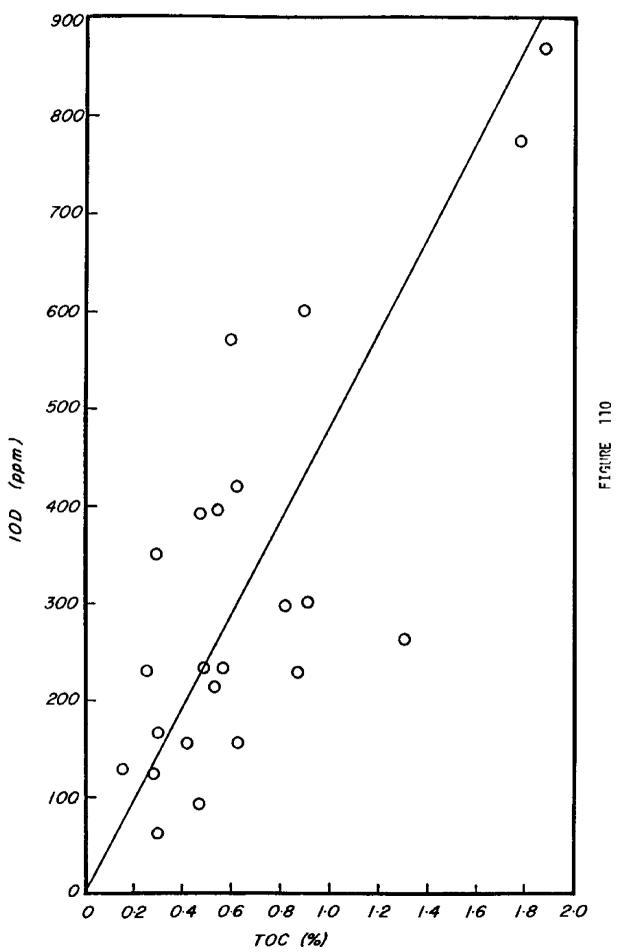
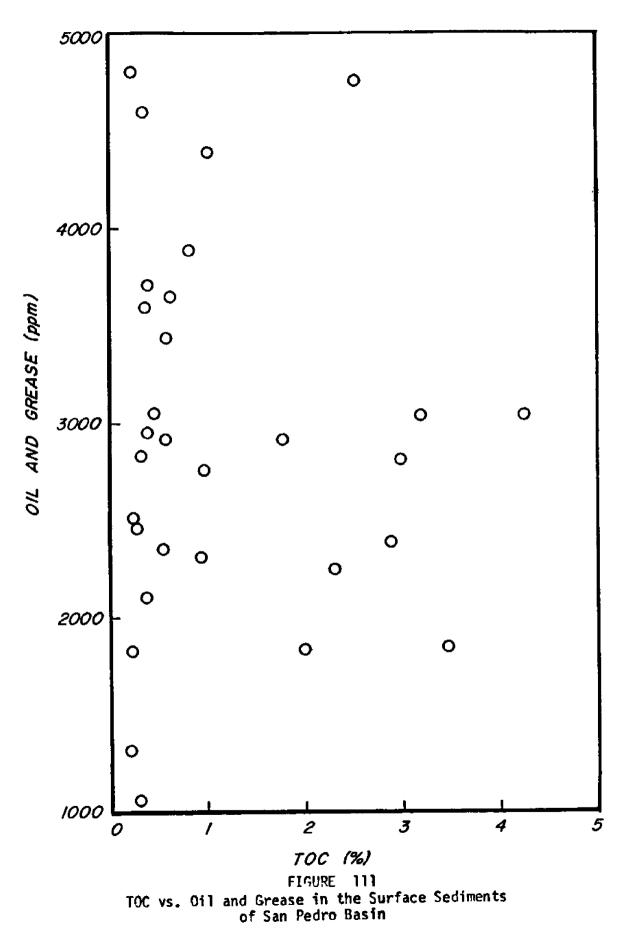



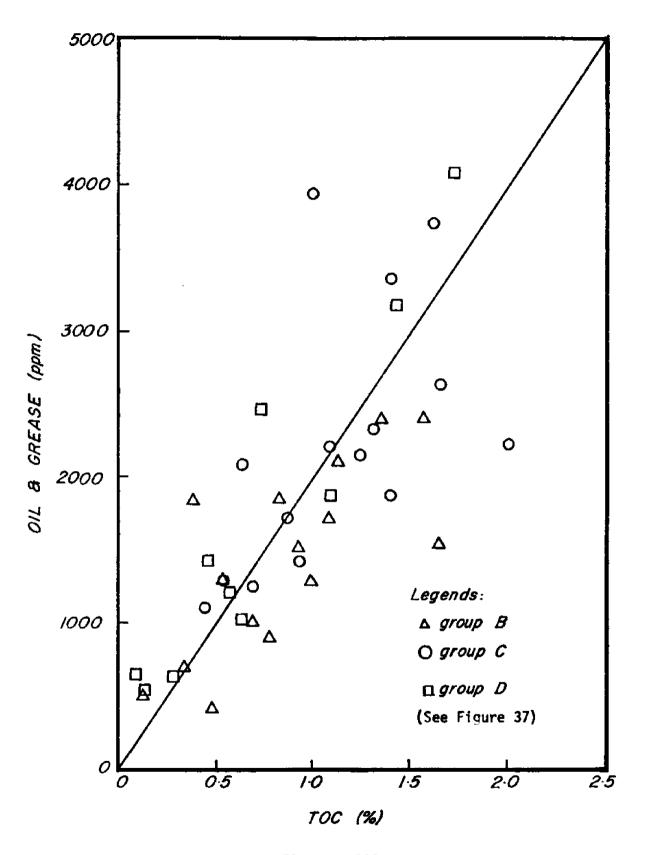
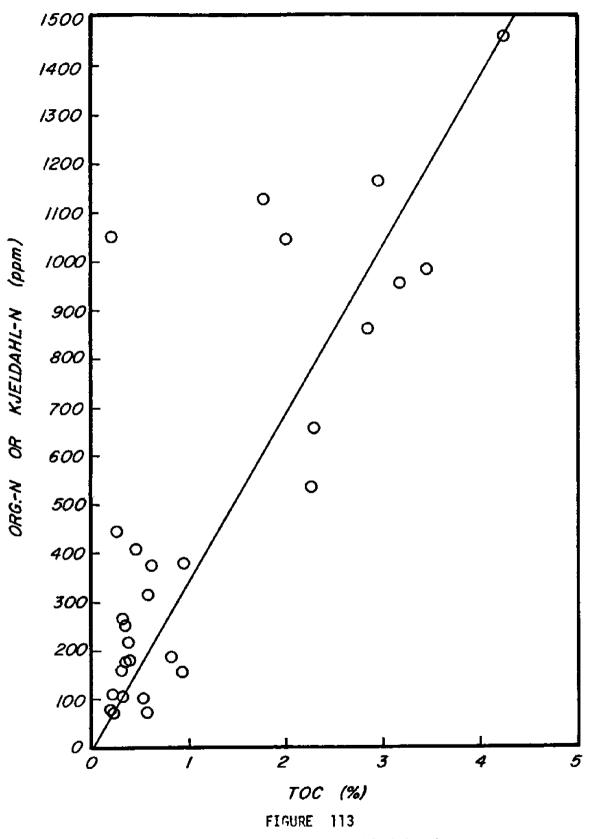
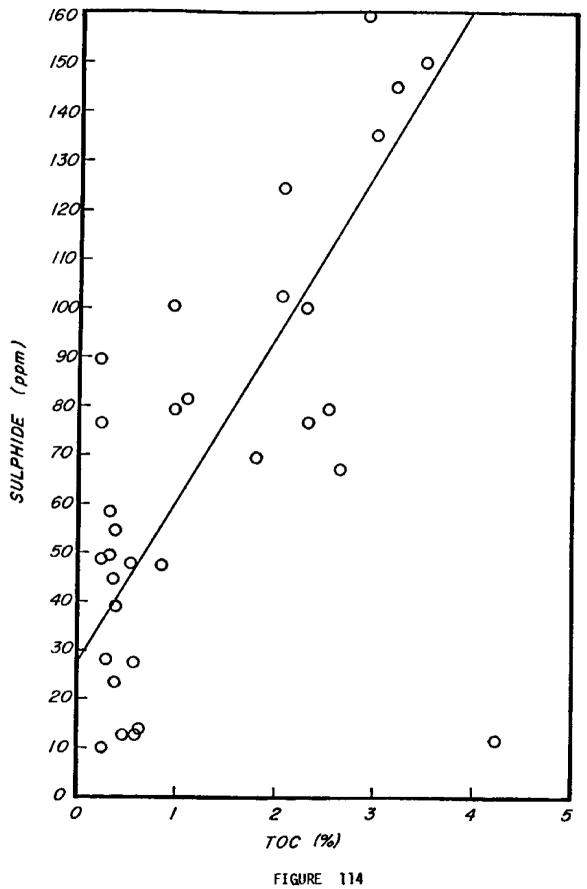
FIGURE 105 TOC vs. COD in the Surface Sediments of San Pedro Basin

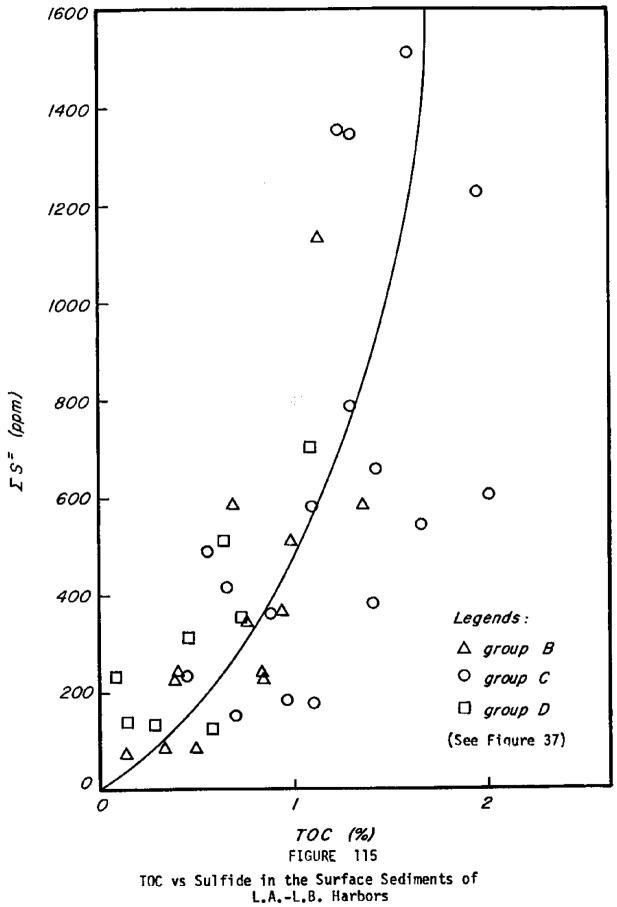
of San Pedro Basin


FIGURE 107 TOC vs. COD in the Sediments of the Proposed LNG Route

TOC vs. IOD in the Sediments of the Proposed LNG Route


FIGURE 112 TOC vs. 0il and Grease in the Surface Sediments of L.A. - L.B. Harbors



TOC vs. Org. N or Kjeldahl N in the Surface Sediments of San Pedro Basin

TOC vs Sulfide in the Surface Sediments of San Pedro Basin

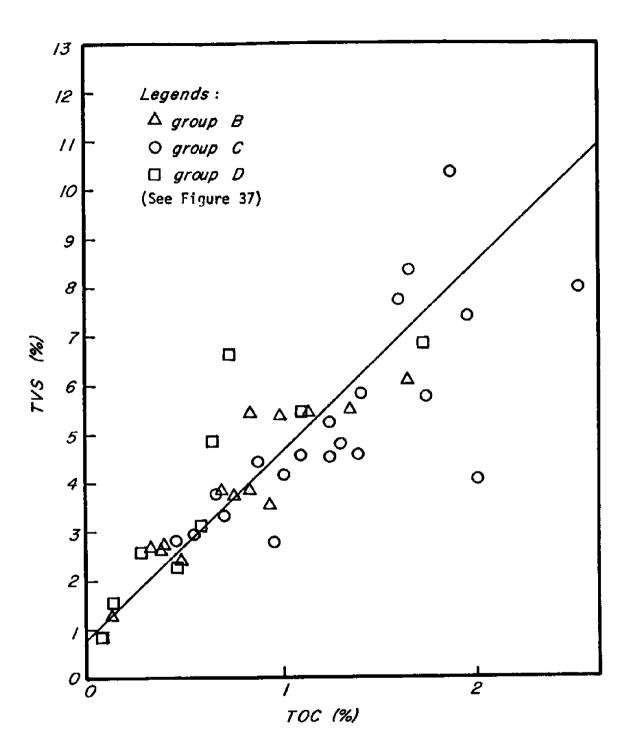


FIGURE 117 TOC vs. TVS in the Surface Sediments of L.A. - L.B. Harbors

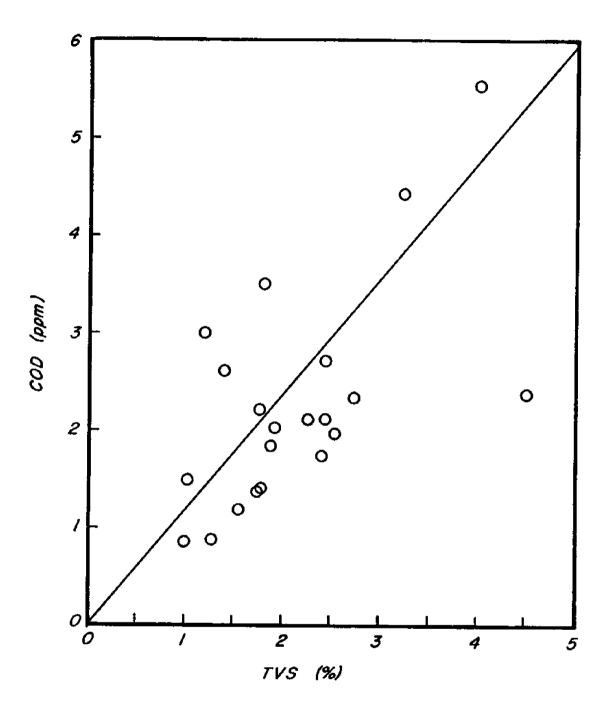
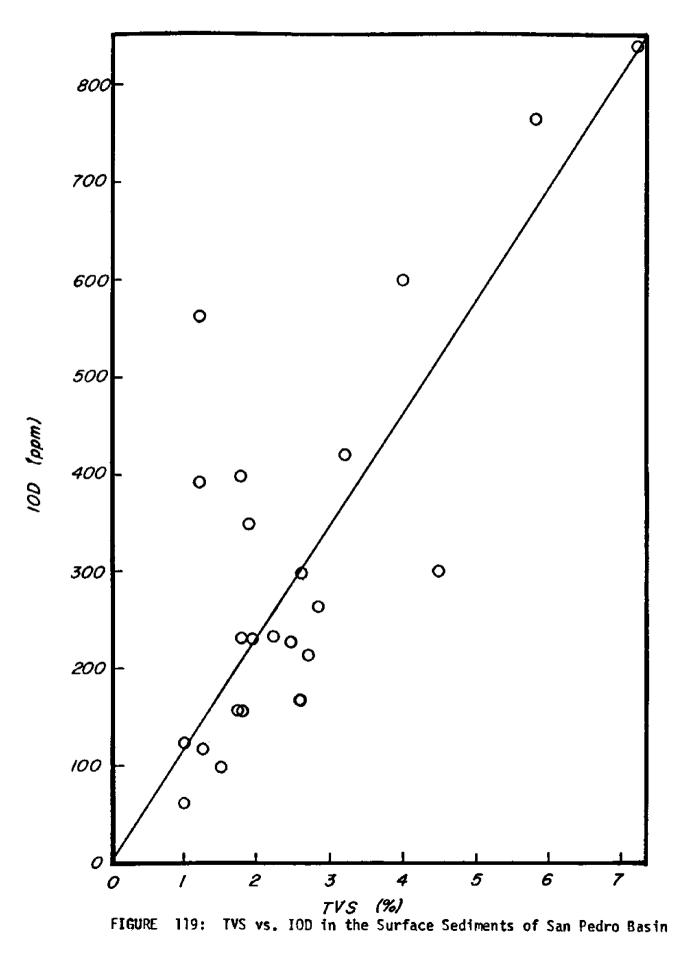
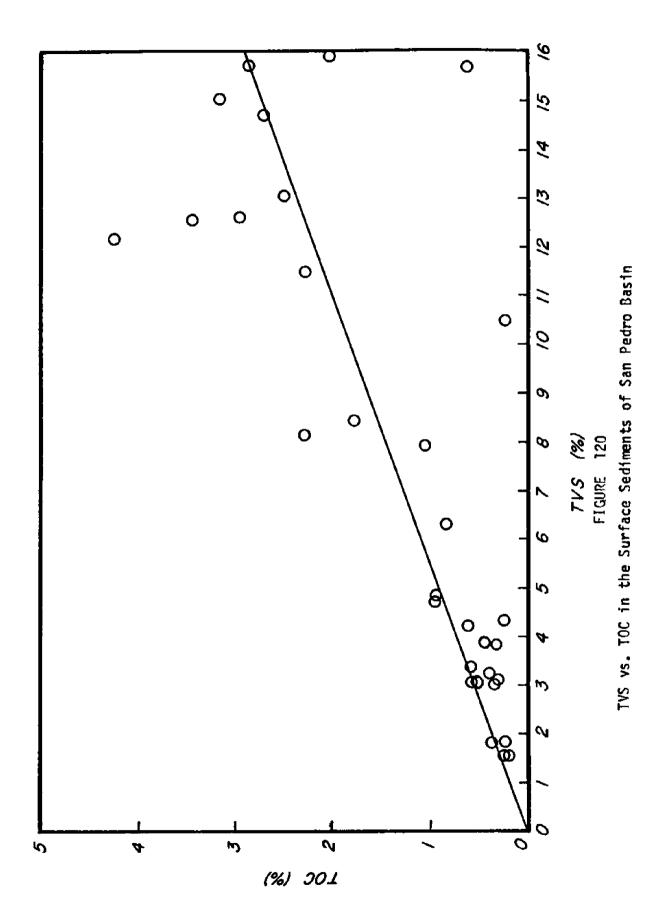




FIGURE 118 TVS vs. COD in the Surface Sediments of San Pedro Basin

N	
TABLE	

GENERAL CHARACTERISTICS OF SEDIMENTS IN THE LOS ANGELES HARBOR

~
columns,
R
for
except
¥.
ក្នុ
$/k_{\mathcal{B}}$
201
~

) Station	Collection on Date	MC%	DMG	COD	100%*	*%SVT	IOD	Oil & Grease	Kjeldahl N	Organic Total N P	c Total P	ນ ເ
A1	10/20/73	27.0	73.0	23400	0.855	3.70	276	1182	73.1	73.1	926	159
A2	=	48.6	51.4	48700	1.629	7.23	398	1373	208.3	208.3	1120	303
A3	=	34.1	65.9	17500	0.329	2.69	286	437	138.7	138.7	818	59
Alt	Ξ	49.7	50.3	101100	1.523	5.14	927	1283	400.8	400.8	1666	111
A5	Ŧ	5-0	45.1	55800	1.824	6,60	620	1165	193.3	193.3	1260	270
A6	÷	53.5	46.5	55500	2.334	6.13	785	2998	616.4	566.8	2253	38
A7	=	36.6	63.4	54400	0.882	3.40	544	1136	215.0	184.3	1453	156
A8	Ŧ	51.5	48.5	0017617	2.026	7.18	834	1145	356.7	356.7	834	544
A9	Ŧ	58.7	41.3	81100	1.406	9.89	1007	1113	457.7	457.7	1592	150
A10	E .	50.1	6.94	73600	2.864	8.12	639	582	406.1	406.1	1616	393
A11	±	31.1	68.9	17600	0.534	3.16	410	898	176.0	176.0	1400	178
A12	Ξ	36.2	63.8	21400	0.666	3.34	435	143	214.2	214.2	1417	76
		MC%	MC% moisture content	content	* 8	dry weight	ht					

Continued
Ň
TABLE

C Station	Collection Date	MC%	2MU	COD	TOC %	TVS %	IOD	Oil & Grease	K jeldahl N	Organic N	Total P	N S"
B1		23.88	76.12	1178	0.219	1.26	89	505	125.4	83.6	989	72
	11/14	22,34	77.66	15100	0.269	2.40	114	630	121.7	118.9	1020	85
B2	10/10	45.84	54.16	30800	1.126	3.78	348	592	586.5	533.9	1580	349
	11/14	43.38	56.62	26400	1.053	5.45	595	5185	365.9	303.2	1309	225
B3	10/10	50.38	149.62	33100	0.784	5.39	763	1296	369.7	333.5	1287	517
	10/14	39.36	60.64	35200	667.0	3.82	721	1101	317.0	303.5	1517	590
B5	10/10	49.14	50.86	61100	1.617	6.08	1003	1571	427.1	9.04E	290	1616
	11/14	29.34	70.66	15260	0.773	2.69	359	1841	283.5	242.6	1532	222
B6	10/10	41.70	58.30	00669	1.143	5.43	737	2108	717.1	692.8	1472	1130
	11/14	45.45	54.55	41300	1.359	5.49	756	2423	348.0	300.4	1617	582
	11/21	45.74	54.26	80300	1.584	6.85	1067	2758	308.0	274.6	1297	1311
B7	10/10	32.77	67.23	51600	0.342	2.67	516	690	246.3	163.2	1108	86
B8	10/10	28.92	71.08	17520	0.400	2.72	261	3890	305.0	287.7	995	241
	11/14	4 4 .01	55.99	23750	0.940	3.53	711	1510	1413.0	378.2	1892	364
B9	11/14	43.38	56.62	27600	0.829	3.86	995	1882	323.7	250.6	1236	239

					77							
) Station	Collection 1 Date	жС%	DMG	COD	TOC %	TVS %	IOD	Oil & Grease	Kjeldahl N	Organic N	Total P	۳S ۲S
C1	10/17	42.25	57.75	47000	1.716	4.17	1013	3950	355.1	343.2	1198	452
	11/21	50.31	49.69	108300	1.661	8.34	1004	3626	386.2	326.0	1354	543
02	10/17	42.73	57.27	30800	1.403	4.57	655	1896	312.4	574.4	1032	382
	11/21	38.56	61.44	84400	2.079	4° 04	876	2221	762.2	760.8	1374	602
63	10/17	35.77	64.23	40100	196.0	2.73	067	1424	6.9444	357.5	1127	187
	11/21	31.21	68.79	36500	0.702	3.31	268	1262	254.5	178.3	1084	154
5	10/17	44.39	55.61	31200	1.101	3.59	638	1702	397.8	359.1	1082	179
	11/21	26.46	73.54	27200	0.451	2.80	194	1117	116.3	115.0	1105	231
05	10/17	49.14	50.86	23100	1.304	13.04	1345	2326	909.1	887.0	1467	1342
	11/21	45.02	54·98	52700	1.250	5.20	1322	2155	601.1	587.5	1426	1354
06 06	10/17	35.54	91.49	16070	647.0	2.94	635	1291	388.7	381.0	1512	164
	11/21	90.44	55.94	26800	1.256	4.82	1026	5596	402.9	374.5	1402	789
67	10/17	53.1	46.9	00424	1.746	5.78	1680	4910	530.5	451.0	1121	1854
	11/21	50.43	49.57	102200	1.952	04.7	1212	5120	644	617.0	1758	1227
CB	11/21	54.49	45.51	124000	1.931	7.74	1518	3780	6.679	961.0	1950	1518
60	10/17	47.02	52.98	34500	1.407	5.81	1394	3361	913.5	894.4	1430	653
	11/21	40.25	59.75	63000	1.104	4.53	587	2215	322.8	305.1	1585	580

TABLE 2, Continued

Collection Date	MC%	DMG	GOD	TOC %	⊮ SVT	ЦОІ I	011 & Grease	Kjeldahl N	Organic N	Total P	"S
37.34 62	62	62.66	02484	1.084	3.76	518	2086	555.9	543.3	1338	415
41.04 58	5 8	58.96	55040	0,946	4.43	689	2215	516.9	503.5	1962	361
48.41 51	12	51.59	143210	2.527	8.00	1898	6401	1530.3	1377.3	1056	2770
54 643 45	5	45.57	159270	1.864	10.39	3125	5500	797.5	720.5	1165	4655
44.10 55.9	55	6.	46410	0,740	6.62	1310	2466	727.5	534.9	1158	353
47.66 52.43	52.	5	67780	1.441	12.22	1883	3173	837.4	835.5	1112	1677
51.57 48.43	148.	<u></u>	23990	1.728	6.86	2302	4091	824.7	715.3	1182	1876
48.04 51.96 37.46 62.54	51.9 62.	8 5	55660 17670	0. <i>553</i> 0.797	5. 44 2.26	973 712	1793 1325	1428.5 288.7	1364.5 288.7	1228 1405	708 314
27.50 72.50	72.	3	7290	0.099	0.82	96	658	107.3	6.93	1134	231
42.94 57.06 35.79 64.21	57.	51	41300 46170	0.637 0.587	4.86 3.10	892 489	1028 1210	723.5 338.6	692.9 298.4	2480 1715	510 126
28.86 71.	12	71.14	17850	0.299	2.59	304	639	225.6	187.7	1345	137
25.95 74.	12	74.05	16510	0.139	1.4	168	532	153.6	140.0	2301	141

TABLE 2, Continued

Continued
Ñ
TABLE

Station	Collection Date	n MC%	DMG	COD	TOC %	TVS%	IOD	Oil & Grease	Kjeldahl N	Organic N	Total P	Σ S ⁼
K1	5/22/73	48.7	51.3	66200	1.036	6.45	603	4110	1510	1510.0	1229.5	1081
K2-A	6/29	40.7	59.3	51600	1.832	3.97	809	8300	1780	1780.0	1448.0	223
K2-B	z	50.6	4.94	88700	2.739	5.36	1386	6720	2470	2470.0	543.2	1739
K2-C	=	42.3	57.7	54800	1.314	5.11	1141	4090	917	911.0	442.6	1453
КЗ-А	12/7	47.1	52.9	51340	1.224	3.60	1120	t+t-6	785.2	773.8	1087.0	151
K3-B	Z	49.2	50.0	52330	1.064	3.52	290	1410	847.3	821.6	1279.0	354
К3-С	÷	49.5	50.5	54310	1.267	3.78	870	961	528.5	4.964	1235.0	519
K3-D	Ξ	41.9	58.1	42330	1.596	3.15	590	277	604.5	549.2	991.0	515
КЗ-Е	Ŧ	41.8	58.2	31200	1.186	3.37	1060	1090	434.2	385.5	922.0	0#6
K4-A	5/31	38.2	61.8	49500	1.186	4.61	1 91	3765	1088	1078.0	669.0	228
K4-B	2	31.8	68.2	35950	0,997	3.49	310	2075	730.5	676.5	622.0	59
K4-C	=	31.5	68.5	32200	0.781	2.73	368	3340	952.5	952.5	775.0	156
K5-A	9/25	6.9	90.1	6023	0.175	1.21	114	557.2	76.2	65.2	506.0	58
K5-B	Ŧ	8.1	91.9	4950	0.189	1.07	104	172.4	76.6	9.49	543.0	29
K5-C	=	6.6	4.69	2742	0.159	0.89	92	153.1	46.6	40.6	0.444	54

TABLE 3

TRACE METALS IN THE SEDIMENTS OF LOS ANGELES HARBOR (mg/kg dry weight)

Zn	3 63.6	0 190.9	1 42.1	3 188.3	3 163.8	1 294.8	4 68.0	0 227.5	6 222.5	0 241.6	3 121.5	
ф _Ч	0 56.3	2 121.0	8 35.1	4 103.3	5 89.3	3 153.1	7 50.4	5 163.0	1 141.6	6 96.0	3 69.3	
ы. Ni	0.461 22.0	0.371 39.2	0.222 24.8	1.248 36.4	1.658 33.5	2.547 34.3	0.761 22.7	0.796 51.5	1.002 63.1	0.562 59.6	331 32.3	2 10 VI
Fe Hg	16880 0.7	44250 0.	12410 0.2	28250 1.:	24870 1.6	18660 2.	11340 0.7	43480 0.7	31550 1.(36400 0.5	29560 0.331	31 610 0 250
Cu	26.9 16	147.1 44	17.8 12	94.2 28	78.2 24	693.1 18	29.2 11	146.4 43	339.0 31	251.1 36	61.4 29	40 li 31
с с	28.4 2	88.9 14	14.0 1	53.5 9	37.2 7	49.5 69	14.1 29	82.6 14	145.9 339	74.8 251	37.0 61	178 IL 110
Cd	1.81 28	5.23 86	0.70 14	3.52 5.	1.86 37	2.67 49	1.76 14	5.58 82	4.04 145	4.76 74	1.62 37	1.00 44
As	9.80 1	8.76	3.70 0	6.32 3	5.25 1	6.80 2	4.70 1	9.75 5	12.02 4	3.24 4	4.25 1	3_80
Collection Date	10/20/73	=	=	=	Ξ	Ŧ	E	Ŧ		=	=	Ξ
Station	A1	A2	A3	A4	A5	A6	A7	AB	A 9	A10	A11	A12

			i.	TABLE 3, CONTINUED	ontruned					
Station	COLLECTION Date	As	Cđ	Сr	Cu	Fе	Hg	Νî	Pb	Zn
B1	10/14	2.79	1,41	28.2	132.3	10420	0.079	22.5	45.0	13.5
	11/14	3.05	1.13	31.1	135.0	11310	0.122	22.6	47.6	50.9
B2	10/10	6.99	2.63	52.6	61.3	51270	0.460	69.2	105.2	168.3
	11/14	94.6	2.85	64.1	85.5	38060	0.244	46.3	89.0	137.6
B3	10/10	10.92	3.34	68.6	76.3	56240	0.381	60.1	114.4	176.4
	10/14	9,08	3.06	76.6	61.3	29480	0.692	45.9	103.6	118.7
B5	10/10	13.88	3.93	98.2	98.2	43550	0.834	64.1	111.0	251.9
	11/14	14.95	3.24	36.7	32.4	18720	0.399	32.4	72.0	104.4
B6	10/10	14.16	4.89	185.1	199.7	34070	1.479	57.1	146.7	501.2
	11/14	19.43	3.53	97.0	185.2	31310	1.619	45.0	105.8	1,861
6B	11/21	28.83	4.85	40.42	861.0	39210	1441.9	50.9	161.7	561.8
B7	10/10	7.76	2.75	48.1	96.2	19710	0.527	33.0	6. 去	106.5
88	10/10	3.45	2.01	66.8	33.4	32350	0.228	36.8	66.8	103.6
	11/14	3.97	4.27	76.9	4. 89	31450	0.436	1 . 171	51.3	111.1
B9	11/14	12.24	61.4	85.8	76.8	34720	1.445	49.0	81.7	118.5

TABLE 3, Continued

Continued
ŝ
TABLE

Station	Collection Date	As	ΡÛ	Gr	Cu	Яe	Hg	ŢN	ЧЧ	ΠZ
G1	10/17	10.3	3.99	79.8	103.8	23140	1.196	39.9	87.8	183.6
	11/21	10.3	3.81	76.3	147.2	30130	1.036	45.8	57.2	196.4
02	10/17 11/21	12.09 11/11	6.61 3.56	82.6 64.8	96.4 82.3	25480 18590	1.033	48.2 35.6	179.1 255.8	176.3 159.3
33	10/17 11/21	6.25 7.11	2.98 2.73	89.5 82.3	68.6 60.6	19390 19540	0.742	38.8 30.0	74.6 50.8	143.2 130.1
C14	10/17	10.93	3.3 4	83.5	87.7	25900	1.402	33.4	101.9	143.7
	11/21	3.45	2.98	47.7	39.7	17870	0.481	35.1	69.5	86.0
G5	10/17	2.32	4.56	149.9	143.9	30770	0.745	81.1	141.8	291.9
	11/21	2.13	5.32	130.1	111.8	32240	0.878	85.1	111.8	245.9
c6	10/17	11.0	6.86	83.9	62.5	19070	0.62	36.6	99.2	125.9
	11/21	6.18	6.19	168.0	110.5	30950	1.447	49.5	123.8	222.8
c7	10/17	18.24	3.49	132.1	185.0	23780	1.131	47.6	137.4	243.1
	11/21	12.51	4.82	236.3	274.1	33080	2.919	43.5	193.8	196.6
08	10/17	13.22	4.85	315.5	236.7	37620	1.771	72.8	182.0	364.1
	11/21	20.90	5.71	214.3	171.4	28380	2.619	66.7	142.9	272.4
60	10/17	19.22	3.84	191.8	131.1	29730	1.350	47.3	108.7	201.4
	11/21	16.41	3.21	156.5	93.2	25620	0.648	39.6	124.2	218.9

Continued	
ŝ	
TABLE	

.

Station	Collection Date	As	ពផ	Сr	Cu	Fe	Hg	ΪĴ	ЪЪ	uz
G1 0	10/17 11/21	11,46 8.03	3.33 2.45	83.3 77.0	53.3 57.2	22670 26960	1.098 0.937	33.3 37.1	73.3 78.4	84.7
C11	10/17 11/21	5.61 29.43	7.18 9.85	358.9 361.1	179.4 322.8	29900 32820	0.712 1.522	59.0 72.2	334.9 386.0 656.5 1914.7	386.0 1914.7
D1	10/31	2.22	3.47	81.5	5.15	32410	0.232	47.7	97.1	137.7
D2	10/31	11.53	4.74	75.3	65.1	29830	0.150	53.9	325.3	230.5
D3	10/31	24.7	5.54	55.4	73.8	38470	0.387	62.7	4.424	317.3
74	10/10 10/31	13.99 12.39	2.96 3.63	59.2 50.9	83.9 34.9	38010 22450	0.769 0.162	44.44 35.6	88.8 69.7	148.1 78.1
D5	10/31	0.102	1.87	33.5	12.0	15060	0.395	23.4	73.6	50.2
Ъ? Д	10/31 11/14	4.50 11.49	1.75 3.31	26.2 91.4	26.2 74.0	25350 34380	0.190 0.576	35.8 56.6	78.7 78.3	80.4 165.4
D8	10/31	3.28	2.30	26.6	17.3	17980	0.160	27.3	146.6	70.6
60	10/31	1-0-0	2.27	16.2	13.6	14560	0.064	23.9	51.1	51.1

161

Continued
Ψ,
TABLE

C Station	Collection Date	As	Cđ	Сr	Сu	ъ Р	Hg 8	N1	Pb	Zn
K1	5/22	8.62	1.95	87.7	146.0	43500	1.283	53.2	191.5	289.0
K2-A	6/29	3.25	3.21	91.63	148.9	41410	1.810	46.96	196.4	252.0
K2-B	Ξ	8,89	3.80	65.68	226.0	04644	3.001	47.71	207.4	283.5
K2-C "	-	7.65	3.16	48.29	134.1	34160	1.178	37.56	143.1	184.8
K3-A	12/7	11.26	2.83	98.9	93.2	31630	0.849	39.5	203.4	178.0
КЗ-в	=	11.11	1.93	99.5	62.2	40420	0.961	31.1	152.4	121.3
К3-С	=	8.09	3.91	114.6	151.1	31270	1.155	46.9	216.2	224.1
К3-р	÷	7.14	4.85	112.1	142.4	32120	1.397	51.5	363.6	342.2
КЭ-Е	÷	11.73	3.11	95.9	121.9	22300	1.933	38.1	274.9	437.2
K4-A	5/31	4.51	1.30	62.4	88.4	22747	0.999	32.42	111.8	286.0
K4-B	E	2.50	0.98	42.3	43.4	16705	0.509	12.3	56.2	97.4
K4-C	=	3.21	1.06	57.8	32.9	12630	0.484	10.06	39.1	68.7
K5-A 9/25	9/25	2.16	1.38	13.79	16.55	7241	0.0567	17.93	39.65	36.5
К5-в	Ŧ	2.12	1.01	10.0	14.48	5050	0.0641	10.10	47.13	28.3
К5-С	z	2.03	0.68	6.83	10.24	4778	0.0108	9.22	17.06	13.6

HARROR
ANCET ES
IOS A
Ю. Ю
SEDIMENTS
THE
H
HYDROCARBONS IN THE SEDIMENTS OF L
CHLORINATED HYDROCARBONS IN THE SEDIMENTS OF LOS ANGELES HAFROF
weight)

		hlor- de	}			·		163						
		Heptachlor- Enoxide		:							:			
		Di- eldrin		1									0.000766	
		Total PCB's	0.371	0.991	0.419	0.935	0.923	1.192	0.409	242.0	1.070	964.0	0.471	0.277
	HARBOR	FCB 1242	0.295	0.635	0.337	0.629	0.629	0.652	0.138	0.553	0.734	0.304	0.212	0.013
	ANGELES	PCB 1260	0.006	0.32	400.0	0.027	0.026	0.048	0.010	0.035	0.030	0.017	0.212	0.135
	TTS OF LOS	PCB 1254	0.068	0.323	0.075	0.277	0.267	0.491	0.110	0.357	0.305	0.175	0.045	0.129
-	CHLORINATED HYDROCARBONS IN THE SEDIMENTS OF LOS ANGELES HARBOR	Total DDT	0.478	1.750	0.156	0.403	0.636	0.497	0.138	0.838	1.033	+5+.0	0.134	0.375
	IT NI SNOS	P.P. DDT	0.022	0.077	: : : :	0.014		0.014		0.029			0.017	0.006
	HYDROCARI	o, p' DDT	0.009	0.025		0.005	1	0.002		0.013	1		0.003	0.002
	ORINATED	۹,۴ DDD	0.055	0.186	0.014	0.053	0.064	0.071	040.0	0.107	0.162	0,101	0.033	0.039
		o, p' JDE	0.066	0.228	0.016	0.033	0.054	0.060	0.010	0.112	0.159	0.074	0.005	0.051
	y weight)	P, P	0.325	0.1232	0.126	0.301	0.516	0.347	0.87	0.575	0.711	0.279	0.74	0.274
	(mg/kg dry weight)	Collection Date	10/20/73	=	=	Ŧ	=	=	=	=	E	Ŧ	=	=
		C Sta <u>tion</u>	A1	A2	A3	A4	A5	A6	٨٦	A8	A9	A 10	A11	A12

TABLE

4

ស៊ី

hlor- e							164								
Heptachlor- <u>Epoxi</u> de	1	ł		ł		ł		I +		ł	1]	;	ł	
Di- 1 eldrin 1	ł	ł		;		{		ł	1	0.0031	h€00.0		1	ł	0.0023
Total PCB's	0.063	0.095	0.22	0.17	0.50	C44.0	0.63	0.18	1.25	1.03	2.03	0.225	0.21	0.30	0.30
PCB 1242	0.023	0.035	0.16	0.06	0.29	0.22	0.29	0.05	0.50	0.30	0.56	0.14	0.15	0.09	0.10
PCB 1260	0,003	0.005	0.005	0.01	0.07	0.02	0.14	0.05	0.21	0.17	0.19	0.005	0.01	0.03	0.05
PCB 1254	0.037	0.055	0.055	0.150	0.14	0.17	0.20	0.08	0.5	0.56	1.28	0.08	0.05	0.18	0.15
Total DDT	0.0951	0.1824	0.0651	0.1242	0.4130	0,3040	0.2796	0.0654	0.2504	0.4294	0.6165	0,0609	0.1086	0.2869	0.3387
p,p'		ł		ł		1		ł	1	0.15	ļ			l F	140.0
o,p' DDT	l l	ł	:	ł		ļ	1	;		:	ł			1	1
p.p' DDD	0.0146	0.0296	0.0153	0.0304	0.0616	0.0851	0.0740	0.0185	0.0990	0.1057	0.3138	0.0181	0.0166	0.0516	0.0570
o,p' DDE	0.0118	0.0225	0.0082	0.0127	0.1027	0.0403	0.0284	0.0069	0.0112	0.0355	0.0506	0.0048	0.0113	0.0381	0.0363 0.0570
n p,p' DDE	0.0687	0.1303	10/10 0.0416	0.0811	0.2487	0.1786	10/10 0.1772	0.0400	0.1402	0.1382	0.2521	0.0380	0.0807	0.1972	11/14 0.1744
Collection p,p' Date DDE	10/14	11/14	10/10	11/14	10/10	10/14	10/10	11/14	10/10	11/14	11/21	10/10	10/10	11/14	11/14
Station	B1		B2		B3		B5		B6			B7	BB		B9

TABLE 4, Continued

	ម								10	5									
	Heptachlor Epoxide	ł	0,003		0.0191	1	0.0015		1	0.0333	0.0330	0.0035	1	ļ ¦	1		i i	0.0175	ł
	Di- He eldrin Er	0.0032	0.0061	0.0039	0.0539	0.0018	ł	0.0021	ł	0.0178	ł	0.0101	0.0057	0.0135	0.0082	0.0427	0.0306	0.0062	0.0112
	Total PCB's	0.79	0.84	1.17	1.12	0.69	0.342	1.41	0.286	1.14	0.270	1.26	2.35	1.77	1.54	1.95	1.39	1.23	0.93
	PCB 1242	0.13	0.19	0.11	0.15	0.17	0.031	0.11	0.033	0.24	0.05	0.12	0.21	0.33	0.24	0.44	0.35	1.0	0.35
	PCB 1260	0.06	0.06	0.11	0.11	20.0	0.03	0.12	0,023	0170	0,050	0.14	0.19	0.14	0.15	0.11	0.14	0.11	0. 05
q	PCB 1254	0.6	0.59	0.95	0.86	0.45	0.28	1.18	0.23	0.50	0.170	1.00	1.95	1.30	1.15	1.40	0.90	0.72	0.53
Continued	Total DDT	0.6906	0.9323	0.6420	0.7233	0.2582	0.1305	0.3428	0.0756	0.2515	0.2177	0.1672	0907.0	1.2421	0.6340	1.1643	0.9207	0.5760	0.7236
TABLE 4,	p,p' DDT		0.1		0.172		ļ		ł	1	0.0291	1	ł	0.651	0.0800		ł		0.2
	o,p' DDT	1	1		i I		ł		ł		0.0076		ł		ł		i r		0,0060
	P,P' DDD	0.1316	0.1673	0.1530	0.1722	0.0733	0.0445	0.1090	0.0246	0.1390	0.1100	0.0648	0.1462	0.3551	0.2393	0.4957	0.2855	0.3470	0.3227
	°,₽' DDE	0.0891	1	0.0310	l F	0.0287	1	0.1908	ł		0.0158		0.0230		0,0360		0.0350		0,0250
	1 P,P' DDE	0.4699	0.6650	1717-0	0.3791	0.1562	0.0860	0.2197	0.0510	0.1125	0.0552	0.1024	0.2368	0.2360	0.2787	0.6686	0.6002	0.2290	0.1669
	Collection p,p ¹ Date, DDE	10/17	11/21	10/17	11/21	10/17	1 1/21	10/17	11/21	10/17	11/21	10/12	11/21	10/17	11/21	10/17	11/21	10/12	11/21
	C St <u>ation</u>	c1		02		c3		170		a5		c6		c7		C8 C8		60	

	ห						1	66						
	Heptachlor Epoxide	0.0052	ł		0.0976		0.1055	0.1704	0.0132			k 1	ŀ	0.0021
	Di- H eldrin E	0.038	0.0055	0.0611	0.0565		0.0113		 0.0018			}	1	0.0024
	Total PCB's	15.0	0.68	3.20	3.75	0.331	1.33	1.69	0.295 0.381	0.063	0.262	0.200	0.164	0.128
	PCB 1242	0.13	0.15	1.30	1.8	0.096	0.723	1.54	0.075	0.038	0.08	0.057	0.067	0.040
	PCB 1260	0.07	0.10	0.30	0.33	0,021	0.1	0.1	0.05 0.018	0.002	0.016	0.013	0.008	0.008
ğ	PCB 1254	0.34	0.43	1.60	1.62	0.214	0.51	1.05	0.17	0.023	0.166	0.13	0.089	0.08
Continued	Total DDT	0.1649	0.2887	1.9785	2.9411	0.4074	0.3422	0.5589	0.3578 0.1122	0.0040	0.2511	0.1237	0.0827	0.0194
TABLE 4,	P,P' DDT	- - - -	ł		1.05	0.0251	0.0462	0.0936	0.0429 0.0176		0.0117	1		
	o,p' DDT		}		ł	0.0025	1	1	0.0073			ł		
	р,Р' DDD	0,0937	0.1140	1.3608	1.3810	0.0590	0.1318	0.1363	0.0645 0.0352	- b - P	0.0529	0.0337	0.0171	2600.0
	o,p' DDE	1	0.0340	0.0970 1.3608	ł	0.0313	0.0561	0.1303	0.0459 0.0225	!	0.0319	0.0148	0.0096	1
	n p,p DDE	0.0712	0.1400	0.5215	0.5101	0.2895	0.1081	10/31 0.1987	0.1973 0.0369	0,0040	0.1546	0.0752	0.0560	2600.0
	Collection p.p. Date DDE	10/17	11/21	11/21	11/21	10/31	10/31	10/31	10/10 10/31	10/31	10/31	11/14	10/31	10/31 0.0097
	C Station	C1 0		C11		H H	D2	۲ <u>و</u>	古	D5	20		98 19	D9

-

TABLE 4, Continued

hloi e															
Heptachlor Epoxide	ł		ł	ł		ł	ł	ł	ł	:	ļ	ł		ł	ł
Di- H eldrin E	ł	1	{	ł	0.00035	0,00022	0.00022	24000.0	0,00020		ł	k I		ł	ŗ
Total PCB's	1		1	ł		ł	i I	ł	ţ		F	ł	;	ł	ł
PCB 1242	1	ł	ł	ł		ţ	ł	;	;		ł	1	0.1135	0.096	0.085
PCB 1260	0.170	0.071	0.0155	0.027	0.11	0.11	0.12	0.62	0.30	0.05	0.033	0.05		ł	ł
PCB 1254	1.605	0.719	0.1545	0.273	1.11	1.20	1.25	4.13	1.30	0.51	0.319	0.498	:	ł	ł
Total DDT	0.324	0.356	0.0961	0.136	0.25	0.35	0.30	0.26	0.23	0.481	0.343	0.377	0.051	0.058	0.069
p,p'	ł		0.0225	0.0388		0.02	ł	ł	ł	1	!	0.066	0.022	0,023	0.047
o pig	E B		ł	ł		0.05	ł	ļ	ł		;	0.013	0.0085	0.006	0.0127
P, P'	0.116	0.120	0.0291	0.0413	0.08	0.10	0.09	0.07	60.0	0.111	0.077	0.07	0.0127	0.018	0.0035 0.0056
DDE	0.208	0.136	0.04445	0.056	0.17	0.18	0.21	0.19	0.14	0.37	0.266	0.267	0.0077	0.0122	0.0035
Collection Date	5/22	6/29	ŧ	ŧ	12/7	=	=	÷	=	5/31	=	5/31	9/25	9/25	9/25
C Station	K1	K2-A	K2-B	K2-C	K3-A	КЗ-В	K3-C	K3-D	К3-Е	K4-A	K4-B	K4-C	K5-A	K5-B	X5-C

TABLE 5

~

GROUPING OF SURFACE SEDIMENTS BY RELATIVE INTENSITY OF CONTAMINATION

	Parameter				Average	Value (ppm,	, except TOC)	TOC)			
	Station	Toc %	As	Cđ	gr	Gu	Э Fr	Н ВН	Ni	Pb	uZ
+-1	c11	2.2	17.5	8.5	360	251	31000	1.12	66	9617	1150
2	c7, c8, K2	1.9	11.4	4.1	147	193	35000	2.05	51	173	255
e	A9, A10	2.1	7.6	4.4	110	295	34000	0.78	61	119	232
+	A4, A5, A6, LNG 12	1.9	5.3	9.3	43	240	23000	1.52	36	113	213
Ś	D2, D3	1.6	9.5	5.1	65	69	34000	0.27	58	375	274
6	B5, B6	1.3	18.3	4.1	92	275	33000	1.08	50	119	384
2	c4, c5, c6, K1, K3	1.1	7.8	3.9	105	93	30000	1.09	48	171	220
ω	Cl,2,3,9,10;A8;X4	1.2	11.3	3.2	88	86	24000	0.91	36	104	168
6	A2,3,7,11,12,B2,3,8,9; D1; LNG's except 12	0.7	7.2	3.4	72	65	38000	0.51	50	68	133
10	B7;D4,5,7,8	0.5	7.6	2.6	51	41	25000	0.38	37	53	107

TABLE 6

GRAIN SIZE DISTRIBUTION ANALYSES OF SEDIMENT SAMPLES FROM THE PROPOSED ING ROUTE

1100% passed 80 sieve

2100% passed 30 sieve

_					<u> </u>				<u></u>	—-ı	
	12			100.0	99.5	1 , <u>66</u>	98.0	87.7	39.6	8.0	
	1 1			100.0 100.0	7.66	0,96	9,46	88 . 8	48.8	6.2	
	10						100.0	90.3 97.9	50.7	3.5	
	6				94.6 100.0	76.9 98.6	56.1 95.0 100.0		24.9 51.3 50.7	4.1 3.6 3.5	
	ω		100.0	98.6	9.46	76.9	56.1	p.64			
	7			100.0	99.3	97.0	43.3 88.7	80.1	24.0 32.1	4.1	
÷	9		100.0	98.5 100.0	95.0	74.7		1		9.2 4.1	l depth
	5			100.0	96.3	88.0	73.8	66.7	14.5	70.0 93.5 11.7	mn and
	41							100.0	98.9	93.5	to core
	6	·						100.0	95.0		ording
	~						100.0	99.2	6.79	89.5	aed acc
	-								100.0	97.5	Samples arranged according to core min and depth.
	SAMPT.R		-4 ≠	4	10	20	01	60	100	200	Samble
				•	E NC	SIEA.	ц ИС 2	IISS	! IA %	ļ	

ra J ω 3 samptes arranged

	20		100.0	98.8	98.2	97.0	88.7	48.1	9.6 11.3 13.0
	19		100.0	93.2 99.4	98.8	89.7 97.1	89.2	60.0	11.3
	18	100.0	95.8 100.0 100.0	93.2	91.6 98.8	89.7	84.4	51.0	
	17		100.0	0.66	97.9	95.8	78.8	45.8	5.7
8	16	100.0	98.2	96.8	95.4	93.2	86.8	45.6	9.8
	14				98.8 100.0	99.5	93.4	32.4	31.8 4.6
	15			100.0	98.8	96.4	0 76	68.9	31.8
	13		100.0	4.99	17.66	98.9	96.9	72.3	17.7
BORING	SAMPLE	≁∣≠	4	10	20	017	60	100	200
			•ON	EVE	IIS :	DNIS	SAT	%	

TABLE 6, Continued

¹100% passed 80 sieve ²100% passed 30 sieve

~

· · · · ·	817					100.0	95.3	57.2	7.8	
	44		100.0	9.66 99.6	97.5		89.5	56.0 62.3 57.2	10.3	th.
6	917		100.0 100.0	9.66	97.6 97.5	93.6 91.5 91.4 100.0	87.4		9.5 10.3 7.8	and def
	54				100.0	93.6	87.2	61.2	25.4	re run a
	ł3	100.0	99.0	98.1	96.9	95.6	86.5	57.5	5.5 20.5 25.4	lg to co
8	422				100.0	9.66		36.0	5.5	accordir
~	4 1					100.0	92.3	42.8	6.7	anged a
	0†		100.0	99,1	96.9	4.16	86.8	65.4	17.7	Samples arranged according to core run and depth.
BORING	SAMPLE	rija	t-	10	20	041	60	100	200	Samj
			•0	N I.	ATIS		ISS V	I %		

	66		100.0	98.2	97.5	96.8	94.8	82.3	1.5
	58 ² 59		10	6	100.0 9	99.7 9		55.1 8	5.3 61.5
	57	100.0 100.0	96.3 99.3	97.8	95.2	85.5	64.5	33.7	4.0
10	56	100.0	96.3	94.1	92.5	99.5 89.4	84.2	59.6 33.7	3.3 6.9 4.0
	50 ²				100.0	99.5	92.9	27.1	3.3
	617		100.0	4.96	98.9	98.2	91.9	34.1	7.2
BORING	SAMPLE	-4	+	10	20	017	60	100	200
		-	• ON	EAE	IS D		SAT 2	6 	

sieve)		1																			
² 100% passed 30	л -	57				100.0	97.9	89.4	65.3	35.3											
2100% Pas	-7	53	1		100.0	98.6	91.3	60.5	31.5	16.5											
² 10		31	1	100.0	97.4	97.0	95.7	78.0	22.3	6.5			37					100.0	99.1	68.4	18.8
		8	100.0	98.9	98.1	97.3	95.7	76.7	16.9	2.7			36					100.0 100.0	95.4	53.9	4.8
		29		100.0	98.6	98.2	96.8	83.2	17.7	4.4		2	35			100.0	98.9	96.2	90.1	53.2	7.1
		28	100.0	99.1	98.4	97.6	92.1	83.5	46.6	6.3	depth.		34		100.0	98.0	96.4	6.06	84.7	49.4	11.8
	3	27					100.0	98.2	49.3	6.5	run and		33	100.0	99.0	98.0	96.0	92.1	89.9	57.4	15.8
		26		100.0	96.7	92.6	0,48	73.2	37.9	11.2	to core		1		100.0	98.8	97.8	96.8	93.7	67.5	30.4
		25	100.0	98.6	97.0	94.8	89.9	83.3	59.9	34.0	according 1		39				100.0	7.99	94.8	56.9	12.7
		22			100.0	96.9	93.8	82.7	67.0	41.8		9	38		100.0	99.7	4,99	0.96	97.2	81.5	12.7
		21		100.0	98.2	52.2	23.9	15.1	11.6	8.1	s arranged		32	100.0	89.0	86.4	79.8	69.7	65.2	48.5	19.5
	BORING	SAMPLE	, ¶≠	4	10	20	04	60	100	200	Samp1 es	BORING	SAMPLE	-4=	4	10	50	07	60	100	200
				•ON	EAE	IIS -	SNIS	SVA	%						•ON	EAE	IS f) NIS	5¥3	%	1

²100% passed 30 sieve 1100% passed 80 sieve ſ T 1 1 100.0 99.6 66 98.9 95.9 7.1 59.7 61 Samples arranged according to core run and depth. 100.0 99.3 95.5 60.8 5.0 602 0.66 100.0 100.0 97.0 78.8 23.0 6.6 52 98.5 30.8 98.0 97.1 91.3 2.7 딑 춦 100.0 99.2 58.0 96.8 5.0 532 TABLE 6, Continued 100.0 97.6 95.2 93.0 76.4 5 43.3 14.1 22 100.0 95.2 21.5 81.9 37.0 98.1 52.2 67.1 51 BORING SAMPLE 200 -1+ 4 잌 20 ç, 3 100 * LASSING SIEVE NO.

	••								
 	69 ²	-			100.0	99.3	95.3	60.3	9.4
	68			100.0	99.5	0.66	90.8 91.1 95.3	39.1	6.4
	67			99.1 100.0 100.0	98.5 99.6 99.5 100.0	98.7	90.8	43.0 39.1 60.3	5.5 4.9 4.6
12	99		100.0	99.1	98.5	93.9 98.7 99.0 99.3	86.1	32.9	2.0
	65		99.0 100.0	0•66	96.9	91.4	0,48	39.9	10.4
	₹	100.0	99.0	95.8	91.2	81.4	70.8	47.2	22.8
	63							100.0	95.0
	62							100,0	95.4
BORING	SAMPLE	-¶≠	4	10	<u>30</u>	017	60	Ī	200
			'ON	EVE	IIS t	DNIS	2A9	%	;

										ſ		ĺ				1				
	62		100.0	98.8	94.5	86.8	78.4	39.0	12.5											
	78		100.0 100.0	98.9	93.3	80.5	76.9	46.6	5.2							1				
14	27					100.0	97.2	59.2	†			88			100.0	98.4	98.4	95.1	73.7	6.2
	76	100.0	5.96	98.4	94.2	84.2	79.0	54.1	13.6		17	87	100.0	97.8	97.1	96.4	95.1	90.7	65.1	6.4
	109	100 0	99.3	98.6	98.1	96.0	80.6	28.4	2.0	depth.	1	86				100.0	98.6	96.3	87.2	37.2
	75		100.0	2.66	96.9	89.4	82.5	48.3	5.1	and		85			100.0	99.5	98.4	4 -96	90.3	46.3
	74		100.0	98.3	93.7	82.1	74.1	36.3	3.5	core run		84					100.0	98.6	71.2	5.4
	53	100.0	98.7	96.0	91.5	80.5	4.63	19.6	3.6	to	16	83	100.0	99.7	98.5	89.7	76.3	69.6	34.9	6.8
13	72			100.0	99.3	98.8	91.5	43.4	5.5	according		82						• • • - -	100.0	94.3
	71		100.0	99.2	98.3	6.46	91.5	65.1	9.5	arranged		81			100.0	99.4	98.0	67.8	17.4	0.4
	20			100.0	4.86	90.16	85.4	66.5	28.1	Samples ar	15	80	100.0	0.66	98.0	95.4	91.3	83.5	60.4	32.9
BORING	SAMPLE	t t	.†	10	50	017	60	100	200		BORING	SAMPLE	-4-	· _t	10	20	017	60	100	200
			• ON	EVE	IS :	DNIS	SAT	%						•0	E N	AEIS	5NI	SS¥0	I %	

TABLE 6, Continued

TABLE 6, Continued

÷

· · · · ·		-				+				•	-
	100					100.0	98.9	91.3	60.9		ſ
20	- 69		100.0	97.3	6.46	93.2	89.6	61.4	15.1		
	98					100.0	94.2	83.0	46.8 61.4 15.1		
	26			100.0	2.66		91.7	69.1 83.0	46.8		
	96							100.0	8.5 98.5		
19	56		100.0	98.9	98.9	98.0	79.1	22.9			
	176					100.0	0.99	95.5 22.9 100.0	86.0	l depth	
	93	100.0	97.3	93.5	88.9	6.79	32.4	22.5	13.5	run and	
	92	100.0	99.2	97.7	4.46	81.3	75.3	53.7	8.2	ged according to core run and depth	
8	91		98.9 100.0	99.2	96.7	84.3	76.4	53.1	6.3	ording 1	
18	96	100.0	98.9	98.3	96.7	6. 75	92.6	70.7	4.4	ged acco	
	89	100.0	99-3	9.79	96.7	95.0	92.2	9.46	43.8	Samples arran(
BORING	SAMPLE	÷₩⇒	4	10	20	0†	60	100	200	Sampl€	b
			•0	N E A	SIE	5N1	SSAT	%			

1						<u></u>			
23	111		·		100.0	96.6	88.6	65.2	53.4
52	110					100.0 100.0 100.0 96.6	95.7 88.6	76.0 91.5 80.5 65.2	96.0 46.6 61.9 63.5 53.4
	107 108					100.0	96.5 97.9	91.5	61.9
	107					100.0	96.5	76.0	46.6
21	106							100.0	96.0
	105 106					100.0	99.2	96.7 100.0	86.2
	104	:			100.0	98.5 100.0	95.9	85.4	68.6
	103						98.1	92.3	76.0 68.6 86.2
20	102				100.0	90.3 100.0	94.2	84.9	72.5
N	101	100.0	99.5	96.7	93.4	91.5	88.5	82.0	72.0
BORING	SAMPLE	त्न∣≠	4	10	20	710	60	100	200
		•	ON 3	IEAI	S DN	ISS /	/∃ %	4	· ·

r		•
L		2
2		j
¢	Y	3
ĩ		5

GENERAL CHARACTERISTICS OF SURFACE SEDIMENTS (0-3') FROM THE PROPOSED LNG ROUTE

Sample No. Moisture 2, 2, 3, 2, 100 For 2, 3, 2, 14, 10 Coll and 2, 11, 10 Coll and 2, 12 Coll and 2, 12 <thcoll anddddddddddddddddddddddddddddddddddd<="" th=""><th></th><th></th><th></th><th></th><th></th><th>1 1111</th><th></th><th></th><th></th><th></th><th></th></thcoll>						1 1111					
Moisture COD TWC TWD Ichase Nutrogen Nutrogen <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Kjeldahl</td> <td></td> <td></td>									Kjeldahl		
	sample No.		00 80 80 80 80 80 80 80 80 80 80 80 80 8	5 5 %	TVS %	TOD ppm	Grease ppm		Nitrogen ppm		Sulfide
26.4 1.96 0.532 2.56 214 2690 89.5 102.0 904 216 17.9 3.01 0.589 1.17 572 3350 173.0 113.0 812 236 24.4 2.09 0.482 2.26 233 2720 114.0 812 236 28.6 2.33 1.31 2.76 264 4100 120.0 102.0 253 28.6 1.36 0.421 1.76 156 2050 74.7 74.7 861 151 28.6 1.36 0.321 193 230 3020 112.0 112.0 103 79 24.4 1.16 0.472 1.30 128 189 300 112.0 1130 73 24.4 1.83 0.283 1.93 230 332.0 112.0 1130 74 24.4 0.83 1.440 48.0 48.0 74 49 25.4	Ы	30.9	•			157	5650	69.9	•	1014	138
17.9 3.01 0.569 1.17 572 3350 173.0 133 985 24.4 2.09 0.482 2.26 233 2720 114.0 812 236 28.6 2.33 1.31 2.76 264 4100 120.0 1020 253 28.6 1.36 0.421 1.76 156 2050 74.7 74.7 861 151 22.6 1.36 0.421 1.51 2720 112.0 112.0 980 72. 24.4 1.16 0.472 1.58 94 1940 64.3 64.3 960 104 24.4 0.848 0.302 112.0 112.0 980 72. 24.4 0.848 0.302 122.0 140.0 150.0 104 25.5 9.53 1.88 7.1.3 33.1 647 49. 24.4 0.848 7.1.3 33.0 122.0 1400 13.0 130	15		•	0.532	•	214	2690	89.5	102.0	904	216
24.4 2.09 0.482 2.26 233 2720 114.0 812 236 28.6 2.33 1.31 2.76 264 4100 120.0 120.0 1020 253 22.6 1.36 0.421 1.76 156 2050 74.7 74.7 861 151 224.4 1.16 0.472 1.58 94 1940 64.3 66.3 960 104 24.7 0.838 0.302 1.03 2302 112.0 48.0 808 72.4 24.4 0.846 0.157 1.93 2302 112.0 112.0 803 72.4 24.4 0.846 0.157 1.93 2302 112.0 109 1135 24.4 0.846 0.157 1.33 247 $495.$ 22.4 1.83 0.128 1.292 122.0 122.0 $137.$	21	17.9	•	0.589		572	3350	173.0	• [313	985
28.62.331.312.762644100120.0120.0102025322.61.360.4211.76156205074.786115124.41.160.4721.5894194064.364.395010424.70.8380.3021.0164170048.048.080872.424.40.8430.3021.032303020112.0112.098179.424.40.8460.1571.30128185033.133.164749.24.40.8460.1571.30128185033.133.164749.25.59.531.893502450122.0142.089037.24.80.8460.1571.301281850122.0142.089037.25.59.531.89350122.0122.01370110113524.82.220.5631.782343850122.0137011024.92.491.480.2831.02124299169.0137026.01.480.2831.02124299160.0125.0137011027.42.390.9124.533021510157.0157.01890108.26.02.590.9124.533021510157.0157.0169.0169.027.4	23	24.4	•	0.482	•	233	2720		• •	812	236
22.6 1.36 0.421 1.76 156 2050 74.7 861 151 24.4 1.16 0.472 1.58 94 1940 64.3 64.3 950 104 24.7 0.838 0.302 1.01 64 1700 48.0 808 72.4 24.7 0.838 0.302 1.03 3020 112.0 803 79.4 26.2 2.044 0.284 1893 3020 112.0 1410 79.4 22.4 1.83 0.233 1.28 1850 122.0 1402 49.7 22.4 1.83 0.283 1.78 3850 122.0 1370 1103 22.4 1.448 0.283 1.78 234 3850 122.0 122.0 1370 110 24.8 2.250 122.0 122.0 122.0 122.0 1370 132	24	28.6	•	•	•	264	4100	120.0	120.0	1 020	253
24.4 1.16 0.472 1.58 94 1940 64.3 64.3 950 104 24.7 0.838 0.302 1.01 64 1700 48.0 48.0 808 72.1 26.2 2.04 0.253 1.93 230 3020 112.0 981 79.1 26.2 2.04 0.253 1.93 230 3020 112.0 981 79.1 26.2 2.04 0.253 1.93 230 2450 122.0 142.0 890 366 22.4 1.83 0.14 872 6000 669.0 1070.0 100 1135 22.4 1.88 7.14 872 6000 669.0 122.0 1370 110 24.8 2.22 0.53 1.78 3850 122.0 122.0 1370 110 24.8 7.14 872 6000 669.0 152.0 1370 1370 24.8 2.48<	32	22.6	•		• 1	156	2050	74.7	74.7	861	151
24.7 0.838 0.302 1.01 64 1700 48.0 48.0 808 72.1 26.2 2.04 0.253 1.93 230 3020 112.0 981 79.1 24.4 0.846 0.157 1.30 128 1850 33.1 33.1 547 $49.$ 22.4 1.83 0.288 1.89 350 2450 122.0 142.0 890 366 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1135 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 890 $37.$ 24.8 2.222 0.563 1.78 234 3850 122.0 1370 110 24.8 2.222 0.563 1.78 234 3850 122.0 1370 1137 24.8 2.222 0.563 1.78 234 1400 51.5 51.5 890 $37.$ 26.1 1.73 0.232 2.44 167 1800 157.0 1802 108 26.1 1.77 0.820 2.44 167 1800 157.0 1805 108 27.0 2.74 2.93 2.94 167 127.0 157.0 1805 108 27.0 2.74 2.93 2.94 167 127.0 127.0 1807 $201.$ 27.0 2.74 2.93 2.94 121	33	24.4	•	0.472	•	94	1940	64.3	64.3	950	104
26.2 2.04 0.253 1.93 230 3020 112.0 112.0 981 $79.$ 24.4 0.846 0.157 1.30 128 1850 31.1 31.1 647 $49.$ 22.4 1.83 0.288 1.89 350 2450 122.0 1600 1135 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1135 24.8 2.22 0.563 1.78 234 3850 122.0 127.0 1370 110 24.8 2.22 0.563 1.78 234 3850 122.0 127.0 1370 110 24.8 2.22 0.563 1.78 234 1400 51.5 51.5 890 $37.$ 26.0 1.48 0.283 1.02 124 299 2160 157.0 159.0 1220 1805 26.1 1.73 0.30 2.41 167 1880 169.0 157.0 1202 438 26.1 1.73 0.30 2.46 229 2160 157.0 1202 438 27.4 2.38 0.912 4.53 302 1510 157.0 1805 $108.$ 26.1 1.73 0.912 2.46 229 2160 117.0 117.0 1658 $201.$ 27.4 2.94 2.94 229 2160 127.0 127.0 127.0 128.0 $201.$ </td <td>40</td> <td>24.7</td> <td>0.838</td> <td>0.302</td> <td>•</td> <td>64</td> <td>1700</td> <td>48.0</td> <td></td> <td>808</td> <td>- • i</td>	40	24.7	0.838	0.302	•	64	1700	48.0		808	- • i
24.4 0.846 0.157 1.30 128 1850 33.1 31.1 647 49. 22.4 1.83 0.288 1.89 350 2450 122.0 142.0 890 366 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1135 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1135 20.8 1.48 0.283 1.02 124 1400 51.5 890 376 20.8 1.48 0.283 1.02 124 1400 51.5 890 376 20.8 1.48 0.283 1.02 124 1400 157.0 157.0 1250 185 20.1 1.73 0.302 2.41 167 1800 170 1250 180 20.1 1.73 0.31 167 1800 157.0 157.0 157.0 1	45	26.2	•		6	230	3020	•	• •	981	• •
22.4 1.83 0.288 1.89 350 2450 122.0 142.0 890 366 52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1135 24.8 2.22 0.563 1.78 234 3850 122.0 1500 1600 1370 110 20.8 1.48 0.283 1.78 234 3850 152.0 1500 1370 110 20.8 1.48 0.283 1.02 124 299 2160 152.0 159.0 1500 169.0 1800 37. 26.1 1.73 0.30 2.41 167 1880 169.0 157.0 1805 108. 26.1 1.73 0.312 2.43 302 1510 157.0 1500 1560 1650 1805 108. 27.0 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 174.0	49	24.4	1 +	•	•	128	1850	33.1	33.1	647	• 1
52.5 9.53 1.88 7.14 872 6000 669.0 1070.0 1600 1137 24.8 2.22 0.563 1.78 234 3850 122.0 127.0 1370 110 20.8 1.48 0.203 1.02 124 1400 51.5 51.5 890 $37.$ 20.8 1.48 0.203 1.02 124 1400 51.5 51.5 890 $37.$ 20.8 1.73 0.302 2.44 299 2160 152.0 159.0 1222 438 26.1 1.73 0.302 2.41 167 1880 169.0 169.0 1250 187 26.1 1.73 0.302 2.41 167 1880 169.0 167.0 1250 187 27.4 2.38 0.912 4.53 302 1510 157.0 1805 108 27.4 2.38 0.912 2.46 229 2560 117.0 117.0 1070 107 27.0 27.4 2.94 2.94 2290 117.0 117.0 740 320 27.4 2.64 0.470 1.38 394 1810 117.0 117.0 740 320 27.4 2.95 1.97 0.95 2.96 1270 192.0 1241 804 27.4 2.95 1.78 778 9400 251.0 292.0 1241 1066 23.3 $2.$	51	22.4	•	0.288	1.89	350	2450		142.0	890	366
24.8 2.22 0.563 1.78 234 3850 122.0 1370 110 20.8 1.48 0.283 1.02 124 1400 51.5 890 37. 20.8 1.48 0.283 1.02 124 1400 51.5 890 37. 26.0 2.66 1.73 0.820 2.41 167 169.0 155.0 1550 1250 1350 26.1 1.73 0.30 2.41 167 1880 169.0 157.0 1250 185 108. 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 1658 201. 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 1658 201. 27.0 2.518 3.94 1810 117.0 117.0 1658 201. 25.3 5.59 0.854 3.94 1810 117.0 117.0 140	62	52.5	•	•	7.14	872	6000		1070.0	1600	1135
20.8 1.48 0.283 1.02 124 1400 51.5 51.5 890 37. 26.0 2.67 0.820 2.44 299 2160 159.0 1222 438 26.1 1.73 0.30 2.41 167 1880 169.0 1250 185 26.1 1.73 0.30 2.41 167 1880 169.0 1250 185 27.0 2.16 0.912 4.53 302 1510 157.0 1805 108. 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 1658 201. 27.0 25.3 2.64 0.470 1.38 394 1810 117.0 117.0 1658 201. 39.5 5.59 0.854 3.94 602 6100 192.0 1241 804 39.5 5.59 0.854 3.94 610 251.0 292.0 1347 1189	70	24.8	•	•	1.78	234	3850	•	•	1370	110
26.0 2.67 0.820 2.44 299 2160 152.0 159.0 1222 438 26.1 1.73 0.30 2.41 167 1880 169.0 169.0 1250 1865 27.4 2.38 0.912 4.53 302 1510 157.0 169.0 1805 $108.$ 27.4 2.16 0.877 2.46 229 2560 117.0 117.0 1678 $201.$ 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 1658 $201.$ 27.0 2.164 0.470 1.38 394 1810 117.0 117.0 740 320 25.3 2.64 0.470 1.38 394 1810 117.0 117.0 1658 $201.$ 25.3 2.64 0.470 1.38 394 1810 117.0 117.0 740 320 25.3 2.64 0.854 3.94 602 6100 192.0 192.0 1241 804 45.2 10.2 1.789 778 9400 251.0 292.0 1347 1189 33.3 3.52 0.544 1.76 320 174.0 198.0 1306 166 33.3 3.52 0.542 3.20 421 2600 187.0 281.3 120 744	76	20.8	•	• •	1 •	124	1400	•	•	890	•
26.1 1.73 0.30 2.41 167 1880 169.0 1250 185 185 27.4 2.38 0.912 4.53 302 1510 157.0 157.0 1805 108. 27.4 2.38 0.912 4.53 302 1510 157.0 157.0 1805 108. 27.0 2.16 0.877 2.46 229 2560 117.0 117.0 1658 201. 25.3 2.64 0.470 1.38 394 1810 117.0 117.0 740 320 39.5 5.59 0.854 3.94 602 6100 192.0 1347 1189 45.2 10.2 1.785 5.78 778 9400 251.0 292.0 1347 1189 33.3 3.52 0.54 1.76 320 174.0 198.0 1366 458 33.3 3.52 0.54 1.420 174.0 198.0 1666	80	26.0	•		•	299	2160	152.0	159.0	1222	438
27.4 2.38 0.912 4.53 302 1510 157.0 1805 108. 27.0 2.16 0.877 2.46 229 2560 117.0 1658 201. 27.0 2.16 0.877 2.46 229 2560 117.0 1658 201. 25.3 2.64 0.470 1.38 394 1810 117.0 117.0 740 320 39.5 5.59 0.854 3.94 602 6100 192.0 1347 804 45.2 10.2 1.785 778 9400 251.0 292.0 1347 1189 33.3 3.52 0.544 1.76 396 1420 174.0 198.0 1366 458 33.3 3.52 0.543 2.20 241 200 231.0 291.0 291.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 201.0 2	82	26.1		0.30	•	167	1880	169.0	•	1250	185
27.0 2.16 0.877 2.46 229 2560 117.0 1658 201. 25.3 2.64 0.470 1.38 394 1810 117.0 740 320 39.5 5.59 0.854 3.94 602 6100 192.0 194.0 804 45.2 10.2 1.785 5.78 778 9400 251.0 292.0 1347 1189 33.3 3.52 0.54 1.76 396 1420 174.0 198.0 1347 1189 31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220 744	85	27.4	•		•	302	1510			1805	•
25.3 2.64 0.470 1.38 394 1810 117.0 740 740 39.5 5.59 0.854 3.94 602 6100 192.0 192.0 1241 45.2 10.2 1.785 5.78 778 9400 251.0 292.0 1347 1 33.3 3.52 0.54 1.76 396 1420 174.0 198.0 1306 31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220	68	27.0		0.877	•	229	2560	•	•	1658	•
39.5 5.59 0.854 3.94 602 6100 192.0 192.0 1241 45.2 10.2 1.785 5.78 778 9400 251.0 292.0 1347 1 33.3 3.52 0.544 1.76 396 1420 174.0 198.0 106 31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220	93	25.3	•	•	•	394	1810	•	117.0	740	320
45.2 10.2 1.785 5.78 778 9400 251.0 292.0 1347 1 33.3 3.52 0.54 1.76 396 1420 174.0 198.0 1106 31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220	98	•	ŝ	0.854	•	602	6100		192.0	1241	804
33.3 3.52 0.54 1.76 396 1420 174.0 198.0 1106 31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220	103	45.2		1.785	5.78	778	9400		292.0	1347	1189
31.7 4.45 0.625 3.20 421 2600 187.0 281.3 1220	οττ	•	•		1.76	396	1420	174.0		1106	458
	111	L.	•		3.20	421	2600			1220	744

.

TABLE 8 METAL CONTENTS OF SURFACE SEDIMENTS (0-3') FROM THE PROPOSED LNG ROUTE

	-		-							-						_							
Cr ppm	109.5	23.2	59	41.8	49.5	35.1	39.6	30.9	24.3	13.9	25.2	33.3	20.1	8.3	37.0	47.6	29.9	32.0	57.8	156.5	178 178	64.8	92
Fe ppm	38000	21100	14450	17150	29050	15460	18050	13800	18220	11970	14680	18700	18450	11210	25950	31600	28100	28100	21300	39400	47990	29800	28430
Cu ppm	43.8	28.4	78	22.6	24.8	41.3	18.35	6.45	18.2	10.7	29.3	95.1	30.5	6.93	36.0	28.9	33.6	22.5	58.6	185	157	44.7	107.4
i N ppm	54.8	21.2	15.2	25.1	31.5	14.2	21.2	13.7	17.3	14.6	23.I	38.1	13.7	11.1	26.6	42.4	32.1	32.4	27.0	53.1	79.92	55.3	58.1
Cd ppm	3.94	1.22	1.71	2.09	2.03	l.29	1.41	0.88	0.96	0.86	1.71	29.0	1.273	0.55	1.73	1.85	1.59	1.99	1.435	3.64	5.07	2.13	3.48
As ppm	0.48	0.312	1.53	1.02	0.778	1.12	0.98	0.77	0.70	0.63	0.82	2.86	0.59	0.55	0.99	1.27	0.99	0.55	1.70	1.22	4.88	1.95	3.86
uZ T	137	77	368	57.5	77.7	56.7	50.8	47.7	47.8	35.6	68.9	205	81.2	34.6	96.8	113.6	108.7	89.9	134.8	279.5	326.5	106.3	180
d Mgd Mgd	190	26.8	66.5	41.8	49.5	19.3	36.7	16.2	36.7	19.4	50.9	107	38.2	13.9	57.0	58.8	55.0	54.6	95.2	173.3	215.4	85.1	133.7
Hg ppm	0.261	0.294	6.05	0.16	0.183	0.120	0.100	0.042	0.182	0.132	0.286	0.61	0.26	0.04	1.23	0.259	0.213	0.170	0.727	1.334	1.723	0.522	1.304
Sample No.	1	15	21	23	24	32	33	40	45	49	51	62	70	76	80	82	85	89	93	98	103	110	111
Core No.	Ч	2	m	4	ഗ	9	2	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

σ TABLE

Dieldrin 1 T I ł 1 I Т 1 1 1 ī F ł Chlordane (ndd) I 1 L I f I E ſ 1 1 I t ł. PESTICIDES DDT 0.0196 0.0506 0.0033 0.089 I. Ł I. L L ţ. ч -L ŧ ORGANOCHLOR INE Ц DDT 0.0168 0.0189 0.0069 0.0001 0.P⁻ I. t ŧ 1 1 ł í I 0.0230 0.1190 0.0340 0.1439 0.0122 0.3436 0.0515 0.0054 0.0185 0.1005 0.0122 0.0125 0.0322 0.0037 0.193 I. 0.6248 0.0790 0.0311 0.1083 0.1316 0.7062 0.3181 0.0573 0.0444 0.596 DDE Aroclor 1260 465 L. 1 L I. L L н Т ŧ L L ō Aroclor 1254 (mdd) 0.0262 0.0514 0.0360 0.1160 0.1435 0.0707 0.1991 0.139 0.594 0.520 I ł ŧ PCB Aroclor 1242 I. t Ł t I. 1 T F. ſ t I. 1 sample ы Ио 32 8 8 9 40 62 ĥ 23 24 45 49 5 Ч 21 Core

^N

Ч

No.

m

4

Q 5 ω δ

ഗ

SEDIMENTS (0-3') CHLORINATED HYDROCARBONS IN SURFACE SEDIM FROM THE PROPOSED LNG ROUTE

I.

1

1 1 I

033

0

0.0125

0.0123

0.0868

ſ 1 I. T.

I.

0.0210

0.1008

0.121

1

t 1 1 1 1

14 ក 16

ł.

70 76 80 82 85 68 93 0

ЦЗ

12

11

10

Ł

E

I ŧ 1

ł

I. I I.

ł

ſ

0.0213

0.0704

0.0600 0.0200

t

0.0123

0404

0

ł I. L

18 <u>6</u>Г

5

1 1 I. ł ŧ

0.0179 0.0057

0.0160 0.0225

1

I.

ſ

I.

0.1270 0.0597

> Ł I ł

Ŧ E L

ഹ

0.145 0.040

0.0512

I 23

Т 1

103

21

0.155

0.1225

0.0362

0.1345 0.2270 0.0136

0.069

Т L

98

20

Ł

I

0.0020 0.0009 0.0041

I

0.0932

0.224

0.091

0.91

t

111

ਂ

110

, ,